Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Talanta ; 259: 124493, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004397

RESUMEN

Integration of singlet oxygen (1O2) detection that provides necessary therapeutic feedback into nanotheranostics for hypoxic tumor photodynamic therapy (PDT) is desirable but still challenging. Herein, we report a nanosensor (denominated PAPD) by combining dual-channel ratiometric sensing and oxygen-augmenting strategies, which synergistically realizes real-time 1O2 self-detection, O2 self-supply and enhanced phototherapy. PAPD nanosensor is constructed by encapsulating anthracene-based 1O2 sensitive fluorophore (DPA) into porphyrin metal-organic frameworks (PCN-224), decorating gold nanoparticles (AuNPs) as nanoenzymes, and coating polyethylene glycol thiol (PEG-SH) by the Au-S bond. PCN-224 serves as 1O2 reference fluorescence (FL) agent and photosensitizer. Once PCN-224-induced 1O2 is synthesized, the dual-channel ratiometric FL signal of PAPD actualizes sensitive, accurate and dynamic 1O2 visualization and gives real-time therapeutic information correlated with the therapeutic progression. Additionally, the catalase-like activity of PAPD possesses in situ O2 production via intracellular H2O2 decomposition and accelerates 1O2 yields for amplifying the tumor cell killing efficiency. Moreover, the ratiometric 1O2 self-detection affords the capacity to evaluate the O2 self-supplying effect in tumor 4T1 cells. Consequently, the rational-designed nanosensor PAPD provides a paradigm for real-time therapeutic evaluation and precise hypoxic tumor treatment clinically.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Fotoquimioterapia , Humanos , Oxígeno Singlete , Oro , Peróxido de Hidrógeno , Retroalimentación , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Oxígeno/química , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
2.
Chem Sci ; 14(5): 1234-1243, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36756327

RESUMEN

Near-infrared (NIR) dyes are widely used in the field of in vivo phototheranostics. Hemicyanine dyes (HDs) have recently received tremendous attention due to their easy synthesis and excellent NIR features. However, HDs can easily form non-fluorescent aggregates and their potential for phototherapy still needs further exploration due to their poor ability to generate reactive oxygen species (ROS). Herein, a series of hemicyanine dyes with different chalcogen atom (O, S, Se) substitutions were constructed to achieve optimized potential for phototheranostics. By replacing O with the heavy atom Se in the xanthene skeleton, CySe-NEt2 showed much more favourable features such as extended NIR absorption/emission wavelength, boosted 1O2 generation rate and higher photothermal effect. In addition, a poly(ethylene glycol) (PEG) group was introduced into the scaffold and yielded a nanotheranostic agent CySe-mPEG5K, which easily formed nanoparticles with appealing features such as excellent photostability, effective prevention of unpleasant H-aggregation, fast/selective tumor accumulation and minimum dark toxicity. Solid tumor growth was significantly suppressed through combined photodynamic therapy (PDT) and photothermal therapy (PTT) guided by NIR fluorescence (NIRF) and photoacoustic (PA) imaging. This study not only presents the first example of selenium-substituted hemicyanine dyes, but also offers a reliable design strategy for the development of potent NIR phototheranostic agents with multi-mode imaging-guided combination therapeutic ability.

3.
J Control Release ; 319: 322-332, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31917296

RESUMEN

The clinical efficacy of existing cancer therapies is still far from satisfactory. There is an urgent need to integrate the emerging biomedical discovery and technological innovation with traditional therapies. Ferroptosis, a non-apoptotic programmed cell death modality, has attracted remarkable attention as an emerging therapeutic target for cancer treatment, especially with the burgeoning bionanotechnology. Given the rapid progression in ferroptosis-driven cancer nanotherapeutics, we intend to outline the latest advances in this field at the intersection of ferroptosis and bionanotechnology. First, the research background of ferroptosis and nanotherapeutics is briefly introduced to illustrate the feasibility of ferroptosis-driven nanotherapeutics for cancer therapy. Second, the emerging nanotherapeutics developed to facilitate ferroptosis of tumor cells are overviewed, including promotion of the Fenton reaction, inhibition of cellular glutathione peroxidase 4 (GPX-4), and exogenous regulation of lipid peroxidation. Moreover, ferroptosis-based combination therapeutics are discussed, including the emerging nanotherapeutics combining ferroptosis with tumor imaging, phototherapy, chemotherapy and immunomodulation. Finally, the future expectations and challenges of ferroptosis-driven nanotherapeutics in clinical cancer therapy are spotlighted.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Peroxidación de Lípido , Neoplasias/tratamiento farmacológico , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA