Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 17(5): 4515-4525, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36847587

RESUMEN

Targeted construction of therapeutic nanoplatforms in tumor cells with specific activation remains appealing but challenging. Here, we design a cancer-motivated upconversion nanomachine (UCNM) based on porous upconversion nanoparticles (p-UCNPs) for precise phototherapy. The nanosystem is equipped with a telomerase substrate (TS) primer and simultaneously encapsulates 5-aminolevulinic acid (5-ALA) and d-arginine (d-Arg). After coating with hyaluronic acid (HA), it can readily get into tumor cells, where 5-ALA induces efficient accumulation of protoporphyrin IX (PpIX) via the inherent biosynthetic pathway, and the overexpressed telomerase prolonged the TS to form G-quadruplexes (G4) for binding the resulting PpIX as a nanomachine. This nanomachine can respond to near-infrared (NIR) light and promote the active singlet oxygen (1O2) production due to the efficiency of Förster resonance energy transfer (FRET) between p-UCNPs and PpIX. Intriguingly, such oxidative stress can oxidize d-Arg into nitric oxide (NO), which relieves the tumor hypoxia and in turn improves the phototherapy effect. This in situ assembly approach significantly enhances targeting in cancer therapy and might be of considerable clinical value.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Telomerasa , Humanos , Fotoquimioterapia/métodos , Telomerasa/metabolismo , Rayos Infrarrojos , Fototerapia , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Ácido Aminolevulínico/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral
2.
Brain Res ; 1726: 146488, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31586625

RESUMEN

Acute ischemic stroke is a leading cause of disability with limited therapeutic options. Continuous theta burst stimulation (cTBS) has recently been shown to be a promising noninvasive therapeutic strategy for neuroprotection in ischemic stroke patients. Here, we investigated the protective effects of cTBS following acute infarction using a photothrombotic stroke (PTS) model in the right posterior parietal cortex (PPC) of C57BL/6 mice. Treatment with cTBS resulted in a reduction in the volume of the infarct region and significantly increased vascular diameter and blood flow velocity in peri-infarct region, as well as decreased the numbers of calcium binding adapter molecule 1 (Iba-1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes. Moreover, the number of CD16/32 positive microglia was decreased, whereas the number of CD206 positive microglia was increased. In addition, performance in a water maze task was significantly improved. These results indicated that cTBS protected against PPC infarct region, leading to an improvement in spatial cognitive function, possibly as a result of changes to cerebral microvascular function and inflammatory responses.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Encefalitis/prevención & control , Accidente Cerebrovascular Isquémico/prevención & control , Neuroprotección , Animales , Capilares/fisiopatología , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Encefalitis/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/psicología , Masculino , Ratones Endogámicos C57BL , Microglía/fisiología , Memoria Espacial , Vasodilatación
3.
ACS Appl Mater Interfaces ; 9(28): 23497-23507, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28661121

RESUMEN

Cancer stem cells (CSCs) have been identified as a new target for therapy in diverse cancers. Traditional therapies usually kill the bulk of cancer cells, but are often unable to effectively eliminate CSCs, which may lead to drug resistance and cancer relapse. Herein, we propose a novel strategy: fabricating multifunctional magnetic Fe3O4@PPr@HA hybrid nanoparticles and loading it with the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycinet-butylester (DAPT) to eliminate CSCs. Hyaluronic acid ligands greatly enhance the accumulation of the hybrid nanoparticles in the tumor site and in the CSCs. Both hyaluronase in the tumor microenvironment and the magnetic hyperthermia effect of the inner magnetic core can accelerate the release of DAPT. This controlled release of DAPT in the tumor site further enhances the ability of the combination of chemo- and magnetohyperthermia therapy to eliminate cancer stem cells. With the help of polypyrrole-mediated photoacoustic and Fe3O4-mediated magnetic resonance imaging, the drug release can be precisely monitored in vivo. This versatile nanoplatform enables effective elimination of the cancer stem cells and monitoring of the drugs.


Asunto(s)
Células Madre Neoplásicas , Liberación de Fármacos , Humanos , Hipertermia Inducida , Nanopartículas , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA