Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Biotechnol ; 14(2): 677-691, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33377615

RESUMEN

Diallyl sulfide (DAS) and diallyl disulfide (DADS), two constituents of garlic, can inhibit quorum sensing (QS) systems of Pseudomonas aeruginosa. However, the differences in the mechanism of QS inhibition between DAS and DADS, and the functional chemical groups of these sulfides that contribute in QS inhibition have not been elucidated yet. We assumed that the sulfide group might play a key role in QS inhibition. To prove this hypothesis and to clarify these unsolved problems, in this study, we synthesized diallyl ether (DAE), and compared and investigated the effects of DAS and DAE on the growth and production of virulence factors, including Pseudomonas quinolone signal (PQS), elastase and pyocyanin, of P. aeruginosa PAO1. Transcriptome analysis and qRT-PCR were used to compare and analyse the differentially expressed genes between the different treatment groups (DAS, DAE and control). The results indicated that DAS did not affect the growth dynamics of P. aeruginosa PAO1; however, DAS inhibited transcription of most of the QS system genes, including lasR, rhlI/rhlR and pqsABCDE/pqsR; thus, biosynthesis of the signal molecules C4 -HSL (encoded by rhlI) and PQS (encoded by pqsABCDE) was inhibited. Furthermore, DAS inhibited the transcription of virulence genes regulated by the QS systems, including rhlABC, lasA, lasB, lecA and phzAB, phzDEFG, phzM and phzS that encode for rhamnolipid, exoprotease, elastase, lectin and pyocyanin biosynthesis respectively. DAS also enhanced the expression of the key genes involved in the biosynthesis of three B vitamins: folate, thiamine and riboflavin. In conclusion, DAS suppressed the production of some virulence factors toxic to the host and enhanced the production of some nutrition factors beneficial to the host. These actions of DAS may be due to its thioether group. These findings would be significant for development of an effective drug to control the virulence and pathogenesis of the opportunistic pathogen P. aeruginosa.


Asunto(s)
Ajo , Complejo Vitamínico B , Compuestos Alílicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Ajo/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum , Sulfuros , Factores de Virulencia/genética
2.
Appl Microbiol Biotechnol ; 100(20): 8865-75, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27388769

RESUMEN

Tea tree oil (TTO) is a yellow liquid extracted from Melaleuca alternifolia. Although the antimicrobial activity of TTO has been known for a long time, its specific antimicrobial effects and mechanism underlying these remain poorly characterized. The present study investigated the chemical composition of TTO and the dynamics and mechanism of its antimicrobial activities in two bacterial and two fungal strains. Gas chromatography-mass spectrometry analysis identified alkenes and alcohols as the main constituents of TTO. Terpinen-4-ol was the most abundant individual component, accounting for approximately 23 % of the TTO. Poisoned food technique assessment showed that the minimum inhibitory concentrations of TTO for bacterial strains (Escherichia coli and Staphylococcus aureus) and fungal strains (Candida albicans and Aspergillus niger) were 1.08 and 2.17 mg/mL, respectively. Antimicrobial dynamic curves showed that with increasing concentrations of TTO, the rate of cell killing and the duration of growth lag phase increased correspondingly. These data indicated that TTO produced concentration and time-dependent antimicrobial effects. The minimum bactericidal and fungicidal concentrations of TTO were 2.17, 4.34, and 4.34 against E. coli, S. aureus, and C. albicans, respectively. However, A. niger conidia were not completely eradicated, even after 3 days in the presence of 17.34 mg/mL TTO. Transmission electron microscopy images indicated that TTO penetrated the cell wall and cytoplasmic membrane of all the tested bacterial and fungal strains. TTO may also penetrate fungal organelle membrane. These findings indicated that TTO maybe exerts its antimicrobial effects by compromising the cell membrane, resulting in loss of the cytoplasm and organelle damage, which ultimate leads to cell death.


Asunto(s)
Antiinfecciosos Locales/farmacología , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Aceite de Árbol de Té/farmacología , Antiinfecciosos Locales/química , Antiinfecciosos Locales/aislamiento & purificación , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Cromatografía de Gases y Espectrometría de Masas , Melaleuca/química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Aceite de Árbol de Té/química , Aceite de Árbol de Té/aislamiento & purificación , Factores de Tiempo
3.
PLoS One ; 9(11): e110983, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25372706

RESUMEN

Litsea cubeba oil is extracted from the fresh fruits of Litsea cubeba by distillation. In this study, its chemical constituents, antibacterial activity, kinetics and effects against Escherichia coli were studied. Its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 0.125% (v/v) by toxic food method. Moreover, the antibacterial kinetic curves indicated 0.0625% (v/v) of litsea cubeba oil was able to prolong the growth lag phase of E. coli cells to approximate 12 hours while 0.125% (v/v) of litsea cubeba oil was able to kill the cells completely. Furthermore, transmission electron microscope (TEM) observation showed most E. coli cells treated with 0.125% (v/v) of litsea cubeba oil were killed or destroyed severely within 2 hours. The litsea cubeba oil might penetrate and destroy the outer and inner membrane of E. coli cells. Thus many holes and gaps were observed on the damaged cells, which led to their death eventually. The antibacterial effects of litsea cubeba oil mainly attributed to the presence of aldehydes, which accounted for approximately 70% in its whole components analyzed by GC/MS. Based on the antimicrobial properties, litsea cubeba oil would have a broad application in the antimicrobial industry.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Litsea/química , Aceites de Plantas/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Escherichia coli/ultraestructura , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Aceites de Plantas/química
4.
Appl Microbiol Biotechnol ; 98(19): 8337-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25012787

RESUMEN

Garlic oil is a kind of fungicide, but little is known about its antifungal effects and mechanism. In this study, the chemical constituents, antifungal activity, and effects of garlic oil were studied with Penicillium funiculosum as a model strain. Results showed that the minimum fungicidal concentrations (MFCs, v/v) were 0.125 and 0.0313 % in agar medium and broth medium, respectively, suggesting that the garlic oil had a strong antifungal activity. The main ingredients of garlic oil were identified as sulfides, mainly including disulfides (36 %), trisulfides (32 %) and monosulfides (29 %) by gas chromatograph-mass spectrometer (GC/MS), which were estimated as the dominant antifungal factors. The observation results by transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that garlic oil could firstly penetrate into hyphae cells and even their organelles, and then destroy the cellular structure, finally leading to the leakage of both cytoplasm and macromolecules. Further proteomic analysis displayed garlic oil was able to induce a stimulated or weakened expression of some key proteins for physiological metabolism. Therefore, our study proved that garlic oil can work multiple sites of the hyphae of P. funiculosum to cause their death. The high antifungal effects of garlic oil makes it a broad application prospect in antifungal industries.


Asunto(s)
Compuestos Alílicos/farmacología , Antifúngicos/farmacología , Ajo/química , Penicillium/efectos de los fármacos , Extractos Vegetales/farmacología , Sulfuros/farmacología , Compuestos Alílicos/química , Antifúngicos/química , Cromatografía de Gases y Espectrometría de Masas , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Penicillium/crecimiento & desarrollo , Extractos Vegetales/química , Sulfuros/química
5.
Appl Microbiol Biotechnol ; 97(16): 7483-92, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23081773

RESUMEN

Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 105 spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 105 spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 105 spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the conidia. Nevertheless, the citronella oil provides a potential of being a safe and environmentally friendly fungicide in the future.


Asunto(s)
Antifúngicos/farmacología , Aspergillus niger/efectos de los fármacos , Aceites de Plantas/farmacología , Aspergillus niger/citología , Aspergillus niger/crecimiento & desarrollo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Viabilidad Microbiana/efectos de los fármacos , Microscopía , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA