Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Chem ; 16(3): 466-475, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38057367

RESUMEN

Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.

2.
Phytother Res ; 37(11): 5017-5040, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37491018

RESUMEN

The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.


Asunto(s)
Enfermedad de Alzheimer , Saponinas , Triterpenos , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Neuroprotección , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico
3.
Phytochem Anal ; 34(2): 209-224, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36529143

RESUMEN

INTRODUCTION: Eleutherococcus senticosus fruit (ESF) is a natural health supplement resource that has been extensively applied as a tonic for the nervous system. The structures and neural bioactivities of triterpenoid saponins (TS), which are the major constituents of ESF, have not been comprehensively analyzed thus far. OBJECTIVE: We conducted a complete in-depth MS/MS molecular networking (MN)-based targeted analysis of TS from the crude extract of ESF and investigated its neuroprotective value. METHODS: An MS/MS MN-guided strategy was used to rapidly present a series of precursor ions (PIs) of TS in a compound cluster as TS-targeted information used in the discovery and characterization of TS. In addition, a prepared TS-rich fraction of ESF was assayed for its restraining effects on ß-amyloid-induced inhibition of neurite outgrowth. RESULTS: A total of 87 TS were discovered using a PI tracking strategy, 28 of which were characterized as potentially undescribed structures according to their high-resolution MS values. Furthermore, the TS-rich fraction can significantly reduce ß-amyloid-induced damage to neural networks by promoting the outgrowth of neurites and axons. CONCLUSION: Our findings reveal the richness of TS in ESF and will accelerate their application in the treatment of neurodegenerative diseases.


Asunto(s)
Eleutherococcus , Saponinas , Triterpenos , Espectrometría de Masas en Tándem , Extractos Vegetales/química , Eleutherococcus/química , Saponinas/química , Frutas/química , Triterpenos/análisis
4.
Phytother Res ; 36(9): 3490-3504, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35844057

RESUMEN

Eleutherococcus senticosus is a medicinal plant widely used in traditional medicine and edible remedies with effects on anti-fatigue, sleep improvement, and memory enhancement. Recently, the application of E. senticosus to neurological disorders has been a focus. However, its overall pharmacological effect on neural diseases and relevant mechanisms are needed in an in-depth summary. In this review, the traditional uses and the therapeutic effect of E. senticosus on the treatment of fatigue, depression, Alzheimer's disease, Parkinson's disease, and cerebral ischemia were summarized. In addition, the underlying mechanisms involved in the anti-oxidative damage, anti-inflammation, neurotransmitter modulation, improvement of neuronal growth, and anti-apoptosis were discussed. This review will accelerate the understanding of the neuroprotective effects brought from the E. senticosus, and impetus its development as a phytotherapy agent against neurological disorders.


Asunto(s)
Eleutherococcus , Enfermedades del Sistema Nervioso , Plantas Medicinales , Antiinflamatorios/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
5.
Food Funct ; 13(6): 3603-3620, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35262106

RESUMEN

Dried Eleutherococcus senticosus leaves (ESL), also known as Siberian ginseng tea, are beneficial for human neural disorders. Our previous studies showed that the aqueous extract of ESL enhanced memory in mice, and its saponin fraction (ESL-SAP) exhibited promising neuroprotective activities in vitro; however, the in vivo neurally related effect, bioactive material basis, and possible mechanism of action of ESL-SAP have not been investigated. Here, a series of memory and learning tests were carried out, and the results evidenced a significant enhancement effect of ESL-SAP. Furthermore, an in vivo saponin library-guided pseudotargeted strategy was established to support the rapid monitoring of 26 blood-brain barrier (BBB)-permeated saponins from ESL-SAP-administered rats. A further network pharmacology analysis was conducted on BBB-permeated compounds, which indicated that the in vivo mechanism of ESL-SAP might be effective through multiple targets and pathways, such as the AGE-RAGE signaling pathway and PI3K-Akt signaling pathway, to exert neuroprotective effects. Moreover, the molecular docking experiments demonstrated that key BBB-transferred saponins primarily interacted with targets HRAS, MAPK1, and MAPK8 to produce the neuroprotective effect.


Asunto(s)
Eleutherococcus , Saponinas , Animales , Barrera Hematoencefálica , Ratones , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Hojas de la Planta/química , Ratas , Saponinas/análisis , Saponinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA