Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38202694

RESUMEN

The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1ß, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.


Asunto(s)
Ginsenósidos , Panax , Animales , Ratones , Ginsenósidos/farmacología , Fosfatidilinositol 3-Quinasas , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología
2.
Wound Repair Regen ; 29(6): 1006-1016, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34448508

RESUMEN

Prolonged skin exposure to ultraviolet radiation can lead to development of several acute and chronic diseases, with UVA exposure considered a primary cause of dermal photodamage. We prepared a wild ginseng adventitious root extract (ARE) that could alleviate UVA irradiation-induced NIH-3T3 cell viability decline. After employing a series of purification methods to isolate main active components of ARE, adventitious root protein mixture (ARP) was identified then tested for protective effects against UVA irradiation-induced NIH-3T3 cell damage. The results showed that ARP treatment significantly reduced UVA-induced cell viability decline and confirmed that the active constituent of ARP was the protein, since proteolytic hydrolysis and heat treatment each eliminated ARP protective activity. Moreover, ARP treatment markedly inhibited UVA-induced apoptosis, cell cycle arrest and DNA fragmentation, while also significantly reversing UVA effects (elevated Bax levels, reduced Bcl-2 expression) by reducing Bax levels and increasing Bcl-2 expression. Mechanistically, ARP promoted Akt phosphorylation regardless of UVA exposure, thus confirming ARP resistance to inactivation by UVA light. Notably, in the presence of Akt inhibitor SC0227, ARP could no longer counteract UVA-induced cell viability decline and DNA fragmentation. Additionally, our results demonstrated that ARP treatment protected UVA-irradiated NIH-3T3 cells by preventing UVA-induced reduction of collagen-I expression. Taken together, these results suggest that ARP treatment of NIH-3T3 cells effectively mitigated UVA-induced cell viability decline by activating intracellular Akt to reduce UVA-induced DNA damage, leading to reduced rates of apoptosis and cell cycle arrest after UVA exposure and restoring collagen expression to normal levels.


Asunto(s)
Panax , Rayos Ultravioleta , Animales , Apoptosis , Ratones , Células 3T3 NIH , Proteínas Proto-Oncogénicas c-akt , Rayos Ultravioleta/efectos adversos , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA