Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
One Health ; 17: 100607, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37588422

RESUMEN

Background: Due to emerging issues such as global climate change and zoonotic disease pandemics, the One Health approach has gained more attention since the turn of the 21st century. Although One Health thinking has deep roots and early applications in Chinese history, significant gaps exist in China's real-world implementation at the complex interface of the human-animal-environment. Methods: We abstracted the data from the global One Health index study and analysed China's performance in selected fields based on Structure-Process-Outcome model. By comparing China to the Belt & Road and G20 countries, the advances and gaps in China's One Health performance were determined and analysed. Findings: For the selected scientific fields, China generally performs better in ensuring food security and controlling antimicrobial resistance and worse in addressing climate change. Based on the SPO model, the "structure" indicators have the highest proportion (80.00%) of high ranking and the "outcome" indicators have the highest proportion (20.00%) of low ranking. When compared with Belt and Road countries, China scores above the median in almost all indicators (16 out of 18) under the selected scientific fields. When compared with G20 countries, China ranks highest in food security (scores 72.56 and ranks 6th), and lowest in climate change (48.74, 11th). Conclusion: Our results indicate that while China has made significant efforts to enhance the application of the One Health approach in national policies, it still faces challenges in translating policies into practical measures. It is recommended that a holistic One Health action framework be established for China in accordance with diverse social and cultural contexts, with a particular emphasis on overcoming data barriers and mobilizing stakeholders both domestically and globally. Implementation mechanisms, with clarified stakeholder responsibilities and incentives, should be improved along with top-level design.

2.
Curr Microbiol ; 79(10): 293, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972650

RESUMEN

Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Antifúngicos/metabolismo , Antifúngicos/farmacología , Biopelículas , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/metabolismo , Melaninas/metabolismo , Melaninas/farmacología , Pruebas de Sensibilidad Microbiana , Triterpenos , Ácido Ursólico
3.
Front Cell Infect Microbiol ; 12: 884793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669114

RESUMEN

Fungal populations are commonly found in natural environments and present enormous health care challenges, due to increased resistance to antifungal agents. Paeonol exhibits antifungal activities; nevertheless, the antifungal and antibiofilm activities of paeonol against Candida albicans and Cryptococcus neoformans remain largely unexplored. Here, we aimed to evaluate the antifungal and antibiofilm activities of paeonol against C. albicans and/or C. neoformans (i.e., against mono- or dual-species). The minimum inhibitory concentrations (MICs) of paeonol for mono-species comprising C. albicans or C. neoformans were 250 µg ml-1, whereas the MIC values of paeonol for dual-species were 500 µg ml-1. Paeonol disrupted cell membrane integrity and increased the influx of gatifloxacin into cells of mono- and dual-species cells, indicating an antifungal mode of action. Moreover, paeonol at 8 times the MIC damaged mono- and dual-species cells within C. albicans and C. neoformans biofilms, as it did planktonic cells. In particular, at 4 and 8 mg ml-1, paeonol efficiently dispersed preformed 48-h biofilms formed by mono- and dual-species cells, respectively. Paeonol inhibited effectively the yeast-to-hyphal-form transition of C. albicans and impaired capsule and melanin production of C. neoformans. The addition of 10 MIC paeonol to the medium did not shorten the lifespan of C. elegans, and 2 MIC paeonol could effectively protect the growth of C. albicans and C. neoformans-infected C. elegans. Furthermore, RNA sequencing was employed to examine the transcript profiling of C. albicans and C. neoformans biofilm cells in response to 1/2 MIC paeonol. RNA sequencing data revealed that paeonol treatment impaired biofilm formation of C. albicans by presumably downregulating the expression level of initial filamentation, adhesion, and growth-related genes, as well as biofilm biosynthesis genes, whereas paeonol inhibited biofilm formation of C. neoformans by presumably upregulating the expression level of ergosterol biosynthesis-related genes. Together, the findings of this study indicate that paeonol can be explored as a candidate antifungal agent for combating serious single and mixed infections caused by C. albicans and C. neoformans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Acetofenonas , Animales , Antifúngicos/farmacología , Biopelículas , Caenorhabditis elegans , Candida albicans , Pruebas de Sensibilidad Microbiana
4.
Biofouling ; 37(6): 666-679, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34320877

RESUMEN

Paeonol, the active ingredient of Paeonia lactiflora root bark, is widely used in traditional Chinese medicine. Few studies have reported the antibacterial activity of paeonol against bacterial pathogens. In this study, the antibacterial and anti-biofilm performance of paeonol against Klebsiella pneumoniae and Enterobacter cloacae was investigated as well as its mechanisms of action. Paeonol effectively inhibited the growth of K. pneumoniae and E. cloacae with a minimum inhibitory concentration of 64 µg ml-1 and it was shown to disrupt the integrity of bacterial cell membranes, and alter cell morphology. Moreover, paeonol exhibited a potent inhibitory effect against adhesion and biofilm formation by K. pneumoniae and E. cloacae. In particular, paeonol efficiently compromised cells within biofilms, and dispersed mature biofilms. Therefore, the present study suggests that paeonol is a promising alternative antibacterial and anti-biofilm agent for combating infections caused by planktonic and biofilm cells of K. pneumoniae and E. cloacae.


Asunto(s)
Enterobacter cloacae , Klebsiella pneumoniae , Acetofenonas , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA