Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36204119

RESUMEN

Objective: To explore the predictive value of single-index screening or multi-index combined screening for preeclampsia. Methods: From January 1, 2019, to December 31, 2021, pregnant women with a singleton pregnancy who had been regularly checked in each center since the first trimester (between 11 and 14 weeks of gestation) were retrieved from multiple participating centers. The risk calculation software LifeCycle 7.0 was used to calculate the risk values before 32 weeks, 34 weeks, and 37 weeks of gestation, and through a receiver operating characteristic (ROC) curve analysis, the predictive values of pregnancy-associated protein A (PAPP-A), the placental growth factor (PLGF), the mean arterial pressure (MAP), the uterine artery pulsatility index (UTPI), or a combined multi-index were calculated for preeclampsia. Results: Finally, 22 pregnant women developed preeclampsia, and the area under the ROC curve of the PAPP-A + PLGF + MAP + UTPI combined screening program was greater than that of other screening programs before 37 weeks of gestation (AUC = 0.975, 0.946, or 0.840 for <32 weeks, <34 weeks, or <37 weeks, respectively). At 32 weeks, the Youden index was at its maximum. Conclusion: PAPP-A + PLGF + MAP + UTPI combined screening is the optimal screening mode for preeclampsia screening before 37 weeks of gestation, and the combined prediction using multiple indicators in early pregnancy is more suitable for predicting the risk of early-onset preeclampsia.

2.
Sensors (Basel) ; 19(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627269

RESUMEN

A magnetic field sensor with a new concentrating-conducting magnetic flux structure (CCMFS) is proposed in this paper, using a silicon-on insulator (SOI) Hall element fabricated by complementary metal oxide semiconductor (CMOS) technology as a magnetic sensitive unit. By fixing the CCMFS above the Hall element packaged on a printed circuit board (PCB) based on inner-connect wire bonding technology, a non-magnetized package can subsequently be obtained. To analyze the inner magnetic field vector distribution of the CCMFS, a simulation model was built based on a finite element software, where the CCMFS was processed using Ni-Fe alloys material by a low speed wire-cut electric discharge technology. The test results showed that the measurement of magnetic fields along a sensitive and a non-sensitive axis can be achieved when VDD = 5.0 V at room temperature, with magnetic sensitivities of 122 mV/T and 132 mV/T in a testing range from -30 mT to 30 mT, respectively. This study makes it possible to not only realize the detection of magnetic field, but also to significantly improve the sensitivity of the sensor along a non-sensitive axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA