Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654538

RESUMEN

The cultivated variety of Chinese yam (Dioscorea polystachya Turcz. cv. Tiegun) is an economically important plant, capable of producing tubers that are used as food and traditional Chinese medicine. The basal stem rot was found on approximately 65% of yam (tuber expansion stage) in a total of 10 ha field in Wuzhi, Wen, and Hua counties, Henan, China (Sep 2021). Dark brown fusiform lesions initially occurred at the stems basal, irregularly extending to join together and leading to loop-stem necrotic indentation. Three diseased samples from Wuzhi county were collected, cut into 5 × 5 mm pieces, surface sterilized in 75% ethanol (30 s) and 1% NaClO (1 min), washed in sterile water 3 times, and placed on PDA in the dark for 3 days at 28℃. A total of 44 isolates forming three groups of Fusarium colonies were obtained using monosporic isolation, of which 19, 8, and 17 isolates were identified as F. oxysporum, F. solani, and F. proliferatum based on colony morphology, respectively. Typical isolates SYJJ6, 9, and 10 for each group were further studied. The SYJJ6 colonies showed gray white abundant fluffy aerial mycelium with rough edges, formation of ellipsoid, unicellular microconidia without septa, 5.6 to 13.4 × 2.4 to 4.7 µm (n = 50), and sickle-shaped, slightly curved macroconidia with 2 to 4 septa, 14.0 to 23.9 × 3.4 to 5.1 µm (n = 50). Isolate SYJJ9 produced flocculent white colonies, grew in a circular pattern with a sharp edge, forming oval or oblong microconidia with zero or one septum, 11.2 to 18.8 × 3.4 to 6.2 µm (n = 50), and slightly curved macroconidia with 2 to 3 septa, 27.6 to 44.0 × 3.9 to 7.4 µm (n = 50). SYJJ10 produced whitish or pinkish white colonies with fluffy aerial mycelium and a red pigmentation, produced renal or oval microconidia with no septa, 5.1 to 11.8 × 1.8 to 4.2 µm (n = 50), and falcate, slightly curved macroconidia with 3 to 4 septa, 16.1 to 30.2 × 3.1 to 5.9 µm (n = 50). Additionally, TUB, EF-1α, and RPB2 genes were amplified with primers BT2a/BT2b, EF1/EF2, and 5f2/-7cr, respectively (Glass and Donaldson 1995; O'Donnell et al. 1998, 2010). BLASTn analysis on SYJJ6 (OR047663, OR047666, OR047669), SYJJ9 (OR047665, OR047667, OR047670), and SYJJ10 (OR047664, OR047668, OR047671) gene sequences were over 99% identical to those of F. oxysporum (100%, MK432917; 100%, MN417196; 99.61%, MN457531), F. solani (100%, MF662662; 100%, MN223440; 99.80%, CP104055), and F. proliferatum (100%, ON557521; 100%, ON458137; 99.90%, LT841266), respectively. Pathogenicity tests of three isolates were separately performed on 60-day-old yam seedlings. The basal stems were wounded using needle, and the wounds were wrapped with cotton balls soaked with conidial suspension (1 mL, 3×106 conidia/mL) or water (control). Each isolate treated three plants and repeated three times. All plants were grown at 28℃ under a 16/8-h light/dark cycle. Typical symptoms emerged on basal stems at 16, 13, and 17 days after inoculation with the conidia of isolates SYJJ6, 9, and 10, while the control basal stems appeared healthy. The re-isolated fungi were identical to the original three isolates. Fusarium species (F. oxysporum, F. commune, F. humuli, etc.)were previously reported to cause wilt or stem rot on different D. polystachya cultivars (Fang et al. 2020; Li et al. 2023; Zhao et al. 2013), or basal stem rot on Panax ginseng (Ma et al. 2020). This is the first report of Chinese yam basal stem rot caused by Fusarium species, which threatens the production of Chinese yam 'Tiegun' and should be further studied.

2.
Front Immunol ; 13: 956181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958612

RESUMEN

Current chemotherapy strategies used in clinic appear with lots of disadvantages due to the low targeting effects of drugs and strong side effects, which significantly restricts the drug potency, causes multiple dysfunctions in the body, and even drives the emergence of diseases. Immunotherapy has been proved to boost the body's innate and adaptive defenses for more effective disease control and treatment. As a trace element, selenium plays vital roles in human health by regulating the antioxidant defense, enzyme activity, and immune response through various specific pathways. Profiting from novel nanotechnology, selenium nanoparticles have been widely developed to reveal great potential in anticancer, antibacterial, and anti-inflammation treatments. More interestingly, increasing evidence has also shown that functional selenium nanoparticles can be applied for potential immunotherapy, which would achieve more effective treatment efficiency as adjunctive therapy strategies for the current chemotherapy. By directly interacting with innate immune cells, such as macrophages, dendritic cells, and natural killer cells, selenium nanoparticles can regulate innate immunity to intervene disease developments, which were reported to boost the anticancer, anti-infection, and anti-inflammation treatments. Moreover, selenium nanoparticles can also activate and recover different T cells for adaptive immunity regulations to enhance their cytotoxic to combat cancer cells, indicating the potential of selenium nanoparticles for potential immunotherapy strategy development. Here, aiming to enhance our understanding of the potential immunotherapy strategy development based on Se NPs, this review will summarize the immunological regulation effects of selenium nanoparticles and the application of selenium nanoparticle-based immunotherapy strategies. Furthermore, we will discuss the advancing perspective of selenium nanoparticle-based potential immunotherapy as a kind of novel adjunctive therapy to enhance the efficiency of current chemotherapies and also introduce the current obstacles for the development of selenium nanoparticles for potential immunotherapy strategy development. This work is expected to promote the future research on selenium nanoparticle-assisted immunotherapy and finally benefit the more effective disease treatments against the threatening cancer and infectious and chronic diseases.


Asunto(s)
Nanopartículas , Neoplasias , Selenio , Humanos , Inmunidad , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Neoplasias/terapia
3.
Pharmacol Res ; 179: 106218, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413423

RESUMEN

The newly emerging nanotheranostic strategies including photodynamic therapy (PDT), photothermal therapy (PTT) and sonodynamic therapy (SDT) have exhibited their unbeatable advantages in treatment and prognosis of glioma tumors as compared to conventional ones like chemotherapy, radiotherapy and surgery. Meanwhile, the components of glioma microenvironment including blood brain barrier (BBB), oxidative stress, hypoxia and angiogenesis, play essential roles in glioma initiation, progression, invasion, recurrence and drug resistance. More importantly, the nanoparticles can modulate the glioma environments to increase targeting capability, monitor the glioma growth, and enhance therapy outcomes. In this review, we will introduce the basic components of glioma microenvironment, the role that glioma microenvironment played on tumor development and progression, and the key perspectives associated with glioma microenvironment-based multifunctional nanoplatform design. In particular, recent advances in glioma microenvironment-response nanoparticles for phototherapy (PTT and PDT) and sonotherapy will be discussed in detail. Finally, the challenges related to the clinical transition for nanomedicine-based glioma theranostics will be addressed.


Asunto(s)
Glioma , Nanopartículas , Fotoquimioterapia , Línea Celular Tumoral , Glioma/terapia , Humanos , Nanopartículas/uso terapéutico , Fototerapia , Nanomedicina Teranóstica , Microambiente Tumoral
4.
Plant Dis ; 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35286130

RESUMEN

Rehmannia glutinosa (family Scrophulariaceae) is an important traditional medicinal plant, whose root is used to treat anemia, hemoptysis, and gynecological diseases in China (Matsumoto et al. 1989). This plant is native to China and cultivated in China, Korea, Japan, and northern Vietnam (Kwak et al. 2020). Viral diseases caused remarkable loss in the yield and quality of R. glutinosa (Ling et al. 2009). To date, ten viruses have been identified globally to infect R. glutinosa and seven of these viruses reported in China (Liu et al. 2018; Zhang et al. 2021). Most plants of R. glutinosa are infected with one or more of these viruses (Kwak et al. 2018; Zhang et al. 2004). In July 2020, a survey of the viral disease infecting R. glutinosa was conducted in commercial plantations of Wenxian, Wuzhi, Mengzhou, and Yuzhou counties in Henan Province, China. The disease symptoms included mosaic, chlorosis, leaf distortion, and the percentage of symptomatic plants was over 70% in the surveyed fields (n=9). Sixty leaf samples of symptomatic R. glutinosa plants were collected from nine cultivation fields in Wenxian, Wuzhi, Mengzhou, and Yuzhou counties (five to seven plants for each field). Total RNA was extracted from one pooled sample containing a portion of all above-mentioned leaf samples using RNAprep Pure Plant Plus Kit (TIANGEN Biotech, Beijing, China) and analyzed by high-throughput sequencing (HTS) to identify viral pathogens. A transcriptome library was generated using NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA), and sequenced on an Illumina NovaSeq6000 sequencing system at Berry Genomics Corporation (Beijing, China). A total of 27,664,949 high-quality clean reads were obtained after trimming and used for contig assembly. The assembled contigs (n=109,180) were searched using Basic Local Alignment Search Tool (BLAST) at GenBank. BLASTn analysis showed that the R. glutinosa plants were infected with known viruses, including broad bean wilt virus, rehmannia mosaic virus, youcai mosaic virus, and cucurbit chlorotic yellows virus. In addition, one contig (6,418 nt in length) had a nucleotide sequence identity of 99.64% with the TN29 isolate of tobacco mild green mosaic virus (TMGMV, GenBank accession no. MF139550). To confirm the presence of this virus, sixty above-mentioned samples were screened by reverse transcription-polymerase chain reaction (RT-PCR) using the specific primer pairs (Supplementary Table1) TMGMG-CPF/TMGMG-CPR targeting a 545-nt fragment within the CP gene. Amplicons with expected sizes were detected from 47 of 60 samples but not from the negative control (virus-free healthy plant through the tip meristem culture). Seventeen amplicons (11#, 13#, 14#, 21#, 22#, 23#, 25#, 26#, 27#, 31#, 32#, 33#, 37#, 52#, 57#, 59#, and 60#) of TMGMV-CP were selected, and purified. The PCR products were cloned into the pMD19-T vector (TAKARA Biotech, Dalian, China) and sequenced. The sequences were deposited into the GenBank (accession nos. MZ395944 to MZ395960). The near-full-length genomic sequence of TMGMV-Rg14 isolate was obtained from one positive sample (sample no. 14) by RT-PCR amplification of two overlapping fragments using the following primer pairs: TMGMV-40F/TMGMV-3570R and TMGMV-3220F/TMGMV-6400R. The near-full-length genomic sequence of the TMGMV-Rg14 isolate was 6 304 nucleotides (nt) in length and deposited into GenBank (accession no. MZ395975). BLASTn analysis demonstrated that the TMGMV-Rg14 isolate shared a sequence identity ranging from 96.89% (AB078435) to 99.60% (MF139550) with the other TMGMV isolates. Furthermore, the virus-free healthy R. glutinosa plants were inoculated with sap from the positive sample (14#) to confirm the infection of TMGMV. Mosaic symptoms were induced on the systemically infected leaves of the inoculated plants 14 days post inoculation. The systemically infected leaves of inoculated plants were assayed by RT-PCR using the primer pairs TMGMV-CPF/CPR. Amplicons of expected size were detected from the inoculated plants but not from non-inoculated plants. To our knowledge, this is the first report of TMGMV infection on R. glutinosa. Further studies are necessary to select a suitable indicator plant for this TMGMV, its host range, and the symptoms it induces in single infection. Since R. glutinosa is cultivated by vegetative propagation, production of virus-free healthy plants is necessary. This study will help to generate virus-free healthy plants and prevent viral disease on R. glutinosa. Further study is needed to determine its pathological implications and economic impact on R. glutinosa in China.

5.
Oxid Med Cell Longev ; 2020: 9343160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963707

RESUMEN

BACKGROUND: Neuroinflammation plays a key role in myocardial ischemia-reperfusion (I/R) injury. Previous studies showed that light-emitting diode (LED) therapy might improve M2 microglia activation and brain-derived neurotrophic factor (BDNF) expression, thereby exerting anti-inflammatory effects. Therefore, we hypothesized that LED therapy might reduce myocardial I/R injury by neuroinflammation modulation. OBJECTIVE: To explore the effect of LED therapy on myocardial I/R-induced injury and seek the underlying mechanism. METHODS: Thirty rats were randomly divided into three groups: Control group (without LED treatment or myocardial I/R, n = 6), I/R group (with myocardial I/R only, n = 12), and LED+I/R group (with myocardial I/R and LED therapy, n = 12). Electrocardiogram was recorded continuously during the procedure. In addition, brain tissue was extracted for BDNF, Iba1, and CD206 analyses, and heart tissue for myocardial injury (ischemic size and infarct size), IL-4 and IL-10 mRNA analysis. RESULTS: In comparison with the I/R group, the ischemia size and the infarct size were significantly attenuated by LED therapy in the LED+I/R group. Meanwhile, the microglia activation induced by I/R injury was prominently attenuated by LED treatment either. And it is apparent that there was also an increase in the beneficial neuroinflammation markers (BDNF and CD206) in the paraventricular nucleus (PVN) in the LED+I/R group. Furthermore, the anti-inflammatory cytokines, IL-4 and IL-10, were greatly decreased by I/R while improved by LED treatment in myocardium. CONCLUSION: LED therapy might reduce neuroinflammation in PVN and decrease myocardium injury by elevating BDNF and M2 microglia.


Asunto(s)
Encéfalo/patología , Inflamación/terapia , Daño por Reperfusión Miocárdica/terapia , Fototerapia , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/patología , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Microglía/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
6.
J Neuroinflammation ; 16(1): 139, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31287006

RESUMEN

BACKGROUND: Sympathetic overactivation and inflammation are two major mediators to post-myocardial ischemia-reperfusion (I/R)-induced ventricular arrhythmia (VA). The vicious cycle between microglia and sympathetic activation plays an important role in sympathetic hyperactivity related to cardiovascular diseases. Recently, studies have shown that microglial activation might be attenuated by light-emitting diode (LED) therapy. Therefore, we hypothesized that LED therapy might protect against myocardial I/R-induced VAs by attenuating microglial and sympathetic activation. METHODS: Thirty-six male anesthetized rats were randomized into four groups: control group (n = 6), LED group (n = 6), I/R group (n = 12), and LED+I/R group (n = 12). I/R was generated by left anterior descending artery occlusion for 30 min followed by 3 h reperfusion. ECG and left stellate ganglion (LSG) neural activity were recorded continuously. After 3 h reperfusion, a programmed stimulation protocol was conducted to test the inducibility of VA. Furthermore, we extracted the brain tissue to examine the microglial activation, and the peri-ischemic myocardium to examine the expression of NGF and inflammatory cytokines (IL-1ß, IL-18, IL-6, and TNF-α). RESULTS: As compared to the I/R group, LED illumination significantly inhibited the LSG neural activity (P < 0.01) and reduced the inducibility of VAs (arrhythmia score 4.417 ± 0.358 vs. 3 ± 0.3257, P < 0.01) in the LED+I/R group. Furthermore, LED significantly attenuated microglial activation and downregulated the expression of inflammatory cytokines and NGF in the peri-infarct myocardium. CONCLUSIONS: LED therapy may protect against myocardial I/R-induced VAs by central and peripheral neuro-immune regulation.


Asunto(s)
Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/terapia , Neuroinmunomodulación/fisiología , Fototerapia/métodos , Fibrilación Ventricular/inmunología , Fibrilación Ventricular/terapia , Animales , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Neuroinmunomodulación/efectos de la radiación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Fibrilación Ventricular/metabolismo
7.
J Cardiovasc Electrophysiol ; 30(7): 1138-1147, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31104349

RESUMEN

BACKGROUND: Sympathetic neural activation plays a key role in the incidence and maintenance of acute myocardial infarction (AMI) induced ventricular arrhythmia (VA). Furthermore, previous studies showed that AMI might induce microglia and sympathetic activation and that microglial activation might contribute to sympathetic activation. Recently, studies showed that light emitting diode (LED) therapy might attenuate microglial activation. Therefore, we hypothesized that LED therapy might reduce AMI-induced VA by attenuating microglia and sympathetic activation. METHODS: Thirty anesthetized rats were randomly divided into three groups: the Control group (n = 6), AMI group (n = 12), and AMI + LED group (n = 12). Electrocardiogram (ECG) and left stellate ganglion (LSG) neural activity were continuously recorded. The incidence of VAs was recorded during the first hour after AMI. Furthermore, we sampled the brain and myocardium tissue of the different groups to examine the microglial activation and expression of nerve growth factor (NGF), interleukin-18 (IL-18), and IL-1ß, respectively. RESULTS: Compared to the AMI group, LED therapy significantly reduced the incidence of AMI-induced VAs (ventricular premature beats [VPB] number: 85.08 ± 13.91 vs 27.5 ± 9.168, P < .01; nonsustained ventricular tachycardia (nSVT) duration: 34.39 ± 8.562 vs 9.005 ± 3.442, P < .05; nSVT number: 18.92 ± 4.52 vs 7.583 ± 3.019, P < .05; incidence rate of SVT/VF: 58.33% vs. 8.33%, P < .05) and reduced the LSG neural activity (P < .01) in the AMI + LED group. Furthermore, LED significantly attenuated microglial activation and reduced IL-18, IL-1ß, and NGF expression in the peri-infarct myocardium. CONCLUSION: LED therapy may protect against AMI-induced VAs by suppressing sympathetic neural activity and the inflammatory response.


Asunto(s)
Corazón/inervación , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad/instrumentación , Infarto del Miocardio/radioterapia , Neuroinmunomodulación , Núcleo Hipotalámico Paraventricular/fisiopatología , Ganglio Estrellado/fisiopatología , Taquicardia Supraventricular/prevención & control , Taquicardia Ventricular/prevención & control , Complejos Prematuros Ventriculares/prevención & control , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Microglía/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Sprague-Dawley , Taquicardia Supraventricular/etiología , Taquicardia Supraventricular/metabolismo , Taquicardia Supraventricular/fisiopatología , Taquicardia Ventricular/etiología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Complejos Prematuros Ventriculares/etiología , Complejos Prematuros Ventriculares/metabolismo , Complejos Prematuros Ventriculares/fisiopatología
8.
Eur J Med Chem ; 136: 382-392, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525839

RESUMEN

Reduction of hippocampal neurogenesis caused by aging and neurological disorders would impair neural circuits and result in memory loss. A new lead compound (N-trans-3',4'-methylenedioxystilben-4-yl acetamide 27) has been discovered to efficiently stimulate adult rats' neurogenesis. In-depth structure-activity relationship studies proved the necessity of a stilbene scaffold that is absent in highly cytotoxic analogs such as chalcones and heteroaryl rings and inactive analogs such as diphenyl acetylene and diphenyl ethane, and validated the importance of an NH in the carboxamide and a methylenedioxy substituent on the benzene ring. Immunohistochemical staining and biochemical analysis indicate, in contrast to previously reported neuroprotective chemicals, N-stilbenyl carboxamides have extra capacity for neuroproliferation-type neurogenesis, thereby providing a foundation for improving the plasticity of the adult mammalian brain.


Asunto(s)
Acetanilidas/farmacología , Descubrimiento de Drogas , Hipocampo/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Extractos Vegetales/química , Estilbenos/farmacología , Acetanilidas/química , Acetanilidas/aislamiento & purificación , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Estilbenos/química , Estilbenos/aislamiento & purificación , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA