Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharm Sci ; 113(1): 33-46, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597751

RESUMEN

As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.


Asunto(s)
Hidrocortisona , Sistema Hipotálamo-Hipofisario , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ritmo Circadiano/fisiología , Glucocorticoides
2.
Sci Rep ; 11(1): 17929, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504149

RESUMEN

The suprachiasmatic nucleus (SCN) functions as the central pacemaker aligning physiological and behavioral oscillations to day/night (activity/inactivity) transitions. The light signal entrains the molecular clock of the photo-sensitive ventrolateral (VL) core of the SCN which in turn entrains the dorsomedial (DM) shell via the neurotransmitter vasoactive intestinal polypeptide (VIP). The shell converts the VIP rhythmic signals to circadian oscillations of arginine vasopressin (AVP), which eventually act as a neurotransmitter signal entraining the hypothalamic-pituitary-adrenal (HPA) axis, leading to robust circadian secretion of glucocorticoids. In this work, we discuss a semi-mechanistic mathematical model that reflects the essential hierarchical structure of the photic signal transduction from the SCN to the HPA axis. By incorporating the interactions across the core, the shell, and the HPA axis, we investigate how these coupled systems synchronize leading to robust circadian oscillations. Our model predicts the existence of personalized synchronization strategies that enable the maintenance of homeostatic rhythms while allowing for differential responses to transient and permanent light schedule changes. We simulated different behavioral situations leading to perturbed rhythmicity, performed a detailed computational analysis of the dynamic response of the system under varying light schedules, and determined that (1) significant interindividual diversity and flexibility characterize adaptation to varying light schedules; (2) an individual's tolerances to jet lag and alternating shift work are positively correlated, while the tolerances to jet lag and transient shift work are negatively correlated, which indicates trade-offs in an individual's ability to maintain physiological rhythmicity; (3) weak light sensitivity leads to the reduction of circadian flexibility, implying that light therapy can be a potential approach to address shift work and jet lag related disorders. Finally, we developed a map of the impact of the synchronization within the SCN and between the SCN and the HPA axis as it relates to the emergence of circadian flexibility.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Corticosterona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Síndrome Jet Lag/metabolismo , Luz , Modelos Teóricos , Sistema Hipófiso-Suprarrenal/metabolismo , Horario de Trabajo por Turnos , Núcleo Supraquiasmático/metabolismo , Animales , Biología Computacional/métodos , Humanos , Síndrome Jet Lag/terapia , Neuronas/metabolismo , Estimulación Luminosa/métodos , Fotoperiodo , Fototerapia/métodos , Péptido Intestinal Vasoactivo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA