Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38539903

RESUMEN

Lead (Pb), a heavy metal environmental pollutant, poses a threat to the health of humans and birds. Inflammation is one of the most common pathological phenomena in the case of illness and poisoning. However, the underlying mechanisms of inflammation remain unclear. The cerebellum and the thalamus are important parts of the nervous system. To date, there have been no reports of Pb inducing inflammation in animal cerebellums or thalami. Selenium (Se) can relieve Pb poisoning. Therefore, we aimed to explore the mechanism by which Se alleviates Pb toxicity to the cerebellums and thalami of chickens by establishing a chicken Pb or/and Se treatment model. Our results demonstrated that exposure to Pb caused inflammatory damage in cerebellums and thalami, evidenced by the characteristics of inflammation, the decrease in anti-inflammatory factors (interleukin (IL)-2 and interferon-γ (INF-γ)), and the increase in pro-inflammatory factors (IL-4, IL-6, IL-12ß, IL-17, and nitric oxide (NO)). Moreover, we found that the IL-2/IL-17-NO pathway took part in Pb-caused inflammatory injury. The above findings were reversed by the supplementation of dietary Se, meaning that Se relieved inflammatory damage caused by Pb via the IL-2/IL-17-NO pathway. In addition, an up-regulated oxidative index malondialdehyde (MDA) and two down-regulated antioxidant indices (glutathione (GSH) and total antioxidant capacity (TAC)) were recorded after the chickens received Pb stimulation, indicating that excess Pb caused an oxidant/antioxidant imbalance and oxidative stress, and the oxidative stress mediated inflammatory damage via the GSH-IL-2 axis. Interestingly, exposure to Pb inhibited four glutathione peroxidase (GPx) family members (GPx1, GPx2, GPx3, and GPx4), three deiodinase (Dio) family members (Dio1, Dio2, and Dio3), and fifteen other selenoproteins (selenophosphate synthetase 2 (SPS2), selenoprotein (Sel)H, SelI, SelK, SelM, SelO, SelP1, SelPb, SelS, SelT, SelU, and selenoprotein (Sep)n1, Sepw1, Sepx1, and Sep15), suggesting that Pb reduced antioxidant capacity and resulted in oxidative stress involving the SPS2-GPx1-GSH pathway. Se supplementation, as expected, reversed the changes mentioned above, indicating that Se supplementation improved antioxidant capacity and mitigated oxidative stress in chickens. For the first time, we discovered that the SPS2-GPx1-GSH-IL-2/IL-17-NO pathway is involved in the complex inflammatory damage mechanism caused by Pb in chickens. In conclusion, this study demonstrated that Se relieved Pb-induced oxidative stress and inflammatory damage via the SPS2-GPx1-GSH-IL-2/IL-17-NO pathway in the chicken nervous system. This study offers novel insights into environmental pollutant-caused animal poisoning and provides a novel theoretical basis for the detoxification effect of Se against oxidative stress and inflammation caused by toxic pollutants.

2.
Sci Total Environ ; 899: 165580, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37467990

RESUMEN

Elevated CO2 and temperature likely alter photosynthetic carbon inputs to soils, which may stimulate soil microbial activity to accelerate the decomposition of soil organic carbon (SOC), liberating more phosphorus (P) into the soil solution. However, this hypothesis on the association of SOC decomposition and P transformation in the plant rhizosphere requires robust soil biochemical evidence, which is critical to nutrient management for the mitigation of soil quality against climate change. This study investigated the microbial functional genes relevant to P mineralization together with priming processes of SOC in the rhizosphere of soybean grown under climate change. Soybean plants were grown under elevated CO2 (eCO2, 700 ppm) combined with warming (+ 2 °C above ambient temperature) in open-top chambers. Photosynthetic carbon flow in the plant-soil continuum was traced with 13CO2 labeling. The eCO2 plus warming treatment increased the primed carbon (C) by 43 % but decreased the NaHCO3-extratable organic P by 33 %. Furthermore, NaHCO3-Po was negatively correlated with phosphatase activity and microbial biomass C. Elevated CO2 increased the abundances of C degradation genes, such as abfA and ManB, and P mineralization genes, such as gcd, phoC and phnK. The results suggested that increased photosynthetic carbon inputs to the rhizosphere of plants under eCO2 plus warming stimulated the microbial population and metabolic functions of both SOC and organic P mineralization. There is a positive relationship between the rhizosphere priming effect and P mineralization. The response of microorganisms to plant-C flow is decisive for coupled C and P cycles, which are likely accelerated under climate change.


Asunto(s)
Glycine max , Rizosfera , Glycine max/metabolismo , Carbono/metabolismo , Cambio Climático , Fósforo/metabolismo , Dióxido de Carbono/metabolismo , Suelo/química , Plantas/metabolismo , Microbiología del Suelo
3.
Sci Total Environ ; 823: 153558, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35124062

RESUMEN

Climate change is likely to influence the reservoir of soil phosphorus (P) as plants adaptably respond to climate change in the perspective of P acquisition capability via root proliferation and mediating biochemical properties in the rhizosphere to access various soil P fractions. It is particularly important in cropping soils where P fertilizer plus soil P is required to synchronize crop P demand for the production sustainability under climate change. However, few studies have examined the effect of CO2 and temperature co-elevation on plant P acquisition, P fractions and relevant functional genes in the rhizosphere of different crops. Thus, the present study investigated the effect of elevated CO2 and warming on P uptake of soybean and rice grown in Mollisols, and soil P fractions and relevant biochemical properties and microbial functions in the rhizosphere with or without P application. Open-top chambers were used to achieve elevated CO2 of 700 ppm combined with warming (+ 2 °C above ambient temperature). CO2 and temperature co-elevation increased P uptake in soybean by 23% and 28% under the no-P and P application treatments, respectively; and in rice, by 34% and 13%, respectively. CO2 and temperature co-elevation depleted organic P in the rhizosphere of soybean, but increased in the rhizosphere of rice. The phosphatase activity negatively correlated with organic P in the highland soil while positively in the paddy soil. The P mineralization likely occurs in soybean-grown soils under climate change, while the P immobilization in paddy soils. CO2 and temperature co-elevation increased the copy numbers of P functional genes including phoD, phoC, pstS and phnX, in soils with P application. These results indicate that the P application would be requested to satisfy the increased P demand in soybean under climate change, but not in rice in paddy soils where soil P availability is sufficient. Therefore, elevated CO2 and temperature facilitated the crop P uptake via biochemical and microbial pathways, and P functional genes played an essential role in the conversion of P.


Asunto(s)
Oryza , Rizosfera , Dióxido de Carbono/análisis , Oryza/metabolismo , Fósforo , Suelo/química , Microbiología del Suelo , Glycine max/metabolismo , Temperatura
4.
Molecules ; 26(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834139

RESUMEN

BACKGROUND: Studies have shown that long non-coding RNAs (lncRNAs) play essential roles in tumor progression and can affect the response to radiotherapy, including in clear cell renal cell carcinoma (ccRCC). LINC02532 has been found to be upregulated in ccRCC. However, not much is known about this lncRNA. Hence, this study aimed to investigate the role of LINC02532 in ccRCC, especially in terms of radioresistance. METHODS: Quantitative real-time PCR was used to detect the expression of LINC02532, miR-654-5p, and YY1 in ccRCC cells. Protein levels of YY1, cleaved PARP, and cleaved-Caspase-3 were detected by Western blotting. Cell survival fractions, viability, and apoptosis were determined by clonogenic survival assays, CCK-8 assays, and flow cytometry, respectively. The interplay among LINC02532, miR-654-5p, and YY1 was detected by chromatin immunoprecipitation and dual-luciferase reporter assays. In addition, in vivo xenograft models were established to investigate the effect of LINC02532 on ccRCC radioresistance in 10 nude mice. RESULTS: LINC02532 was highly expressed in ccRCC cells and was upregulated in the cells after irradiation. Moreover, LINC02532 knockdown enhanced cell radiosensitivity both in vitro and in vivo. Furthermore, YY1 activated LINC02532 in ccRCC cells, and LINC02532 acted as a competing endogenous RNA that sponged miR-654-5p to regulate YY1 expression. Rescue experiments indicated that miR-654-5p overexpression or YY1 inhibition recovered ccRCC cell functions that had been previously impaired by LINC02532 overexpression. CONCLUSIONS: Our results revealed a positive feedback loop of LINC02532/miR-654-5p/YY1 in regulating the radiosensitivity of ccRCC, suggesting that LINC02532 might be a potential target for ccRCC radiotherapy. This study could serve as a foundation for further research on the role of LINC02532 in ccRCC and other cancers.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Tolerancia a Radiación , Factor de Transcripción YY1/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/radioterapia , Línea Celular Tumoral , Humanos , Neoplasias Renales/genética , Neoplasias Renales/radioterapia , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Factor de Transcripción YY1/genética
5.
Biomater Sci ; 9(14): 4904-4921, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34047319

RESUMEN

The biological barrier of solid tumors hinders deep penetration of nanomedicine, constraining anticancer treatment. Moreover, the inherent multidrug resistance (MDR) of cancer tissues may further limit the efficacy of anti-tumor nanomedicine. We synthesized highly permeable, photothermal, injectable, and positively charged biodegradable nucleic acid hydrogel (DNA-gel) nanoparticles to deliver cancer drugs. The nanoparticles are derived from photothermal materials containing black phosphorus quantum dots (BPQDs). The intra-tumoral BPQDs improve the sensitivity of tumor cells to photothermal therapy (PTT) and photodynamic treatment (PDT). Tumor cells take up the positively charged and controllable size DNA-gel nanoparticles, facilitating easy penetration and translocation of the particles across and within the cells. Mouse models demonstrated the anti-tumor activity of the DNA gel nanoparticles in vivo. In particular, the DNA gel nanoparticles enhanced clearance of both small and large tumor masses. Just 20 days after treatment, the tumor masses had been cleared. Compared to DOX chemotherapy alone, the DNA-gel treatment also significantly reduced drug resistance and improved the overall survival of mice with orthotopic breast tumors (83.3%, 78 d). Therefore, DNA gel nanoparticles are safe and efficient supplements for cancer therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Fotoquimioterapia , Animales , Línea Celular Tumoral , ADN , Doxorrubicina , Hidrogeles , Ratones , Fototerapia
6.
Zhongguo Zhong Yao Za Zhi ; 39(15): 2881-5, 2014 Aug.
Artículo en Chino | MEDLINE | ID: mdl-25423826

RESUMEN

Photosynthetic and growth characteristics of Angelica dahurica were studied in order to clarity the relations of photosynthesis, growth and root dry weight, and provide a theoretical basis for its cultivation. Photosynthesis and growth indexes were meas- ured every 25 days. The contents of chlorophyll a, b, a + b, soluble protein and the activities of Hill reaction, Ca(2+)-ATPase, Mg(2+)-ATPase had an increasing trend; They had the highest value in leaf high-speed growth period. Then, they were decreased in root high- speed growth period. The root dry weight showed negative corelation with photosynthetic characteristics indexes except stomatal con- ductance, however, the negative corelation only from net photosynthetic rate and Ca(2+)-ATPase were significant. The vegetative growth period of spring sowing A. dahuricia was divided into three phases: seedling period, leaf high-speed growth period and root high-speed growth period. The root dry weight showed a significantly positive corelation with the root diameter, leaf dry weight, shoot dry weight, aboveground dry weight. There was the competitive relation between aboveground and underground, so underground growth could be es- timated from leaf area and shoot dimeter.


Asunto(s)
Angelica/crecimiento & desarrollo , Angelica/metabolismo , Fotosíntesis , Adenosina Trifosfatasas/metabolismo , Angelica/enzimología , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Estaciones del Año
7.
Zhongguo Zhong Yao Za Zhi ; 30(14): 1069-72, 2005 Jul.
Artículo en Chino | MEDLINE | ID: mdl-16161439

RESUMEN

OBJECTIVE: The experiment was conducted to study the dynamic growth rhythm of Achyranthes bidentata under different densities. METHOD: The plant samples were collected to measure the growth rate of each organ. RESULT: Under different densities, the growing dynamic rhythm of A. bidentata were similar. The growth of main root exhibited a trend of "slow-fast-slow" by stages. The increase of dry root weight was fastest during the period of 30-40 days before harvest. The dry-matter increasing rate of whole plant was fastest in the later period of branching stage. The differences of root yields among the plants growing under different densities were significant. CONCLUSION: For high yield and good quality, the density of planting of A. bidentata should be considered.


Asunto(s)
Achyranthes/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Plantas Medicinales/crecimiento & desarrollo , Achyranthes/anatomía & histología , Achyranthes/química , Biomasa , Medicamentos Herbarios Chinos/análisis , Tamaño de los Órganos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Raíces de Plantas/anatomía & histología , Raíces de Plantas/química , Tallos de la Planta/anatomía & histología , Tallos de la Planta/química , Plantas Medicinales/anatomía & histología , Plantas Medicinales/química , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA