RESUMEN
Pneumoconiosis' pathogenesis is still unclear and specific drugs for its treatment are lacking. Analysis of series transcriptome data often uses a single comparison method, and there are few reports on using such data to predict the treatment of pneumoconiosis with traditional Chinese medicine (TCM). Here, we proposed a new method for analyzing series transcriptomic data, series difference analysis (SDA), and applied it to pneumoconiosis. By comparison with 5 gene sets including existing pneumoconiosis-related genes and gene set functional enrichment analysis, we demonstrated that the new method was not inferior to two existing traditional analysis methods. Furthermore, based on the TCM-drug target interaction network, we predicted the TCM corresponding to the common pneumoconiosis-related genes obtained by multiple methods, and combined them with the high-frequency TCM for its treatment obtained through literature mining to form a new TCM formula for it. After feeding it to pneumoconiosis modeling mice for two months, compared with the untreated group, the coat color, mental state and tissue sections of the mice in the treated group were markedly improved, indicating that the new TCM formula has a certain efficacy. Our study provides new insights into method development for series transcriptomic data analysis and treatment of pneumoconiosis.