Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38659261

RESUMEN

BACKGROUND: Honokiol is a natural polyphenolic compound extracted from Magnolia officinali, which is commonly used material in Chinese herbal medicine, has a variety of biological functions, including anti-tumor, anti-oxidant, anti-inflammation, anti-microbial and anti-allergy. Although honokiol has numerous beneficial effects on human diseases, the underlying mechanisms of tumor metastasis are still unclear. Previously, we reported that honokiol suppresses thyroid cancer cell proliferation with cytotoxicity through cell cycle arrest, apoptosis, and dysregulation of intracellular hemostasis. Herein, we hypothesized that the antioxidant effect of honokiol might play a critical role in thyroid cancer cell proliferation and migration. METHODS: The cell viability assays, cellular reactive oxygen species (ROS) activity, cell migration, and immunoblotting were performed after cells were treated with honokiol. RESULTS: Based on this hypothesis, we first demonstrated that honokiol suppresses cell proliferation in two human anaplastic thyroid carcinoma (ATC) cell lines, KMH-2 and ASH-3, within a dosage- and time-dependent manner by cell counting kit-8 (CCK-8) assay. Next, we examined that honokiol induced ROS activation and could be suppressed by pre-treated with an antioxidant agent, N-acetyl-l-cysteine (NAC). Furthermore, the honokiol suppressed cell proliferation can be rescued by pre-treated with NAC. Finally, we demonstrated that honokiol inhibited ATC cell migration by modulating epithelial-mesenchymal transition (EMT)-related markers by Western blotting. CONCLUSION: Taken together, we provided the potential mechanism for treating ATC cells with honokiol, which significantly suppresses tumor proliferation and inhibits tumor metastasis in vitro through reactive oxygen species (ROS) induction.

2.
Huan Jing Ke Xue ; 44(11): 6137-6148, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973097

RESUMEN

To investigate the distribution characteristics of the cyanobacteria community and the driving factors in impounded lakes and reservoirs in Shandong on the east route of the South-to-North Water Diversion Project, monthly samples of phytoplankton and the aquatic environment from Nansi Lake, Dongping Lake, Datun Reservoir, Donghu Reservoir, and Shuangwangcheng Reservoir were collected from May to November during 2010 to 2019. A total of 44 planktonic cyanobacteria taxa were identified with 23 filamentous cyanobacteria taxa. Pseudanabaena limnetica, Cylindrospermopsis raciborskii, Microcystis aeruginosa, and Microcystis wesenbergii were the dominant harmful cyanobacteria species, with a high detection frequency and abundance in all lakes and reservoirs. By analyzing the distribution characteristics of the cyanobacteria community in impounded lakes and reservoirs, we found that filamentous cyanobacteria had growth advantages in the water with large hydraulic disturbances, which should be the key points of cyanobacteria prevention and control in the future. Pearson correlation analysis and generalized linear fitting curve results showed that total nitrogen, total phosphorus, water temperature, and water depth played a key role in affecting the growth of P. limnetica, C. raciborskii, M. aeruginosa, and M. wesenbergii. The nitrogen and phosphorus nutrients could promote the growth of harmful cyanobacteria. Due to the good temperature adaptability, P. limnetica could still become the dominant species in early summer and late autumn, and C. raciborskii, M. aeruginosa, and M. wesenbergii had growth advantages when the water temperature was higher than 25℃. In addition, shallow water was more conducive to the growth of C. raciborskii. It was suggested that based on strengthening of the control of nitrogen and phosphorus nutrient input in lakes and reservoirs, the key monitoring of P. limnetica in lakes should be conducted in early summer and late autumn, and the growth of C. raciborskii in shallow water areas should be paid close attention in the high temperature period to ensure the safety of water quality.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Monitoreo del Ambiente , Fitoplancton , Fósforo/análisis , Nitrógeno/análisis
3.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34503074

RESUMEN

Thyroid cancer (TC) is the most common endocrine malignancy, and its global incidence has steadily increased over the past 15 years. TC is broadly divided into well-differentiated, poorly differentiated, and undifferentiated types, depending on the histological and clinical parameters. Thus far, there are no effective treatments for undifferentiated thyroid cancers or advanced and recurrent cancer. Therefore, the development of an effective therapeutic is urgently needed for such patients. Piperlongumine (PL) is a naturally occurring small molecule derived from long pepper; it is selectively toxic to cancer cells by generating reactive oxygen species (ROS). In this study, we demonstrate the potential anticancer activity of PL in four TC cell lines. For this purpose, we cultured TC cell lines and analyzed the following parameters: Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction. PL modulated the cell cycle, induced apoptosis, and suppressed tumorigenesis in TC cell lines in a dose- and time-dependent manner through ROS induction. Meanwhile, an intrinsic caspase-dependent apoptosis pathway was observed in the TC cells under PL treatment. The activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL. PL-mediated apoptosis in TC cells was through the ROS-Akt pathway. Finally, the anticancer effect and safety of PL were also demonstrated in vivo. Our findings indicate that PL exhibits antitumor activity and has the potential for use as a chemotherapeutic agent against TC. This is the first study to show the sensitivity of TC cell lines to PL.

4.
Oncol Lett ; 12(2): 904-910, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27446367

RESUMEN

Radix Paeoniae Rubra (RPR) is the dried root of Paeonia lactiflora Pallas and Paeonia veitchii Lynch, and is a herbal medicine that is widely used in traditional Chinese medicine for the treatment of blood-heat and blood-stasis syndrome, similarly to Cortex Moutan. The present study identified the same three components in RPR and Cortex Moutan extracts. In addition, it has been reported that RPR has an anti-cancer effect. Bladder cancer is the seventh most common type of cancer worldwide. Due to the high recurrence rate, identifying novel drugs for bladder cancer therapy is essential. In the present study, RPR extract was evaluated as a bladder cancer therapy in vitro and in vivo. The present results revealed that RPR extract reduced the cell viability of bladder cancer cells with a half maximal inhibitory concentration of 1-3 mg/ml, and had an extremely low cytotoxic effect on normal urothelial cells. Additionally, RPR decreased certain cell cycle populations, predominantly cells in the G1 phase, and caused a clear sub-G increase. In a mouse orthotopic bladder tumor model, intravesical application of RPR extract decreased the bladder tumor size without altering the blood biochemical parameters of the mice. In summary, the present results demonstrate the anti-proliferative properties of RPR extract on bladder cancer cells, and its anti-bladder tumor effect in vivo. Compared to Cortex Moutan extract, RPR extract may provide a more effective alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer.

5.
Artículo en Inglés | MEDLINE | ID: mdl-24282433

RESUMEN

Cortex Moutan is the root bark of Paeonia suffruticosa Andr. It is the herbal medicine widely used in Traditional Chinese Medicine for the treatment of blood-heat and blood-stasis syndrome. Furthermore, it has been reported that Cortex Moutan has anticancer effect. In this study, the Cortex Moutan extract was evaluated in bladder cancer therapy in vitro and in vivo. Cortex Moutan extract reduces cell viability with IC50 between 1~2 mg/ml in bladder cancer cells, and it has lower cytotoxicity in normal urotheliums. It arrests cells in G1 and S phase and causes phosphatidylserine expression in the outside of cell membrane. It induces caspase-8 and caspase-3 activation and poly(ADP-ribose) polymerase degradation. The pan caspase inhibitor z-VAD-fmk reverses Cortex Moutan-induced cell death. Cortex Moutan also inhibits cell invasion activity in 5637 cells. In mouse orthotopic bladder cancer model, intravesical application of Cortex Moutan decreases the bladder tumor size without altering the blood biochemical parameters. In summary, these results demonstrate the antiproliferation and anti-invasion properties of Cortex Moutan in bladder cancer cells and its antibladder tumor effect in vivo. Cortex Moutan may provide an alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer.

6.
Artículo en Inglés | MEDLINE | ID: mdl-23573134

RESUMEN

Some phytochemicals with the characteristics of cytotoxicity and/or antimetastasis have generated intense interest among the anticancer studies. In this study, a natural flavonoid baicalein was evaluated in bladder cancer in vitro and in vivo. Baicalein inhibits 5637 cell proliferation. It arrests cells in G1 phase at 100 µ M and in S phase below 75 µ M. The protein expression of cyclin B1 and cyclin D1 is reduced by baicalein. Baicalein-induced p-ERK plays a minor role in cyclin B1 reduction. Baicalein-inhibited p65NF- κ B results in reduction of cell growth. Baicalein-induced pGSK(ser9) has a little effect in increasing cyclin B1/D1 expression instead. The translation inhibitor cycloheximide blocks baicalein-reduced cyclin B1, suggesting that the reduction is caused by protein synthesis inhibition. On the other hand, neither cycloheximide nor proteasome inhibitor MG132 completely blocks baicalein-reduced cyclin D1, suggesting that baicalein reduces cyclin D1 through protein synthesis inhibition and proteasomal degradation activation. In addition, baicalein also inhibits cell invasion by inhibiting MMP-2 and MMP-9 mRNA expression and activity. In mouse orthotopic bladder tumor model, baicalein slightly reduces tumor size but with some hepatic toxicity. In summary, these results demonstrate the anti-bladder-tumor properties of the natural compound baicalein which shows a slight anti-bladder-tumor effect in vivo.

7.
Int J Mol Med ; 30(5): 1021-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22922731

RESUMEN

Although hepatitis C virus (HCV) affects approximately 130-170 million people worldwide, no vaccines are available. HCV is an important cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma, leading to the need for liver transplantation. In this study, curcumin, a constituent used in traditional Chinese medicine, has been evaluated for its anti-HCV activity and mechanism, using a human hepatoma cell line containing the HCV genotype 1b subgenomic replicon. Below the concentration of 20% cytotoxicity, curcumin dose-dependently inhibited HCV replication by luciferase reporter gene assay, HCV RNA detection and HCV protein analysis. Under the same conditions, curcumin also dose-dependently induced heme oxygenase-1 with the highest induction at 24 h. Hemin, a heme oxygenase-1 inducer, also inhibited HCV protein expression in a dose-dependent manner. The knockdown of heme oxygenase-1 partially reversed the curcumin-inhibited HCV protein expression. In addition to the heme oxygenase-1 induction, signaling molecule activities of AKT, extracellular signal-regulated kinases (ERK) and nuclear factor-κB (NF-κB) were inhibited by curcumin. Using specific inhibitors of PI3K-AKT, MEK-ERK and NF-κB, the results suggested that only PI3K-AKT inhibition is positively involved in curcumin-inhibited HCV replication. Inhibition of ERK and NF-κB was likely to promote HCV protein expression. In summary, curcumin inhibited HCV replication by heme oxygenase-1 induction and AKT pathway inhibition. Although curcumin also inhibits ERK and NF-κB activities, it slightly increased the HCV protein expression. This result may provide information when curcumin is used as an adjuvant in anti-HCV therapy.


Asunto(s)
Antivirales/farmacología , Curcumina/farmacología , Hemo-Oxigenasa 1/metabolismo , Hepacivirus/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Replicación Viral/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hemo-Oxigenasa 1/genética , Hemina/farmacología , Hemina/fisiología , Humanos , Interferencia de ARN , ARN Viral/biosíntesis , ARN Viral/genética , Transducción de Señal , Proteínas no Estructurales Virales/biosíntesis , Proteínas no Estructurales Virales/genética
8.
Mol Nutr Food Res ; 52(11): 1349-57, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18496814

RESUMEN

Wogonin, a naturally occurring plant flavonoid, is isolated from Chinese herbal plants Scutellaria baicalensis Georgi and S. barbata D. Don. The extract of S. baicalensis Georgi has been added to an assortment of health drinks or food supplements. Wogonin has been reported to exhibit anticancer and anti-inflammatory properties. Cyclooxygenase-2 (COX-2) is a key enzyme in the production of prostaglandins in inflammatory conditions. In this study, the effect of wogonin on phorbol 12-myristate 13-acetate (PMA)-induced COX-2 expression was investigated. It showed that wogonin inhibited PMA-induced COX-2 protein and mRNA levels in human lung epithelial cancer cells, and the mechanism of this inhibition was at the transcriptional level by using COX-2 gene promoter assay. Among various signal inhibitors, the mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor U0126 also inhibited PMA-induced COX-2 expression and COX-2 promoter activation. The activity of AP-1-driven promoter, but not nuclear factor-kappa B (NF-kappaB), was inhibited by U0126. The data indicated that MEK1/2-AP-1 is very important for PMA-induced COX-2 expression. Wogonin also inhibited PMA-induced AP-1 activation and the expression of c-Jun, a key component of AP-1. Taken together, it is suggested that wogonin inhibits PMA-induced COX-2 gene expression by inhibiting c-Jun expression and AP-1 activation in A549 cells.


Asunto(s)
Antiinflamatorios/farmacología , Bebidas , Ciclooxigenasa 2/genética , Inhibidores de la Ciclooxigenasa/farmacología , Flavanonas/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/enzimología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Humanos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-jun/antagonistas & inhibidores , Acetato de Tetradecanoilforbol/farmacología , Factor de Transcripción AP-1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA