Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 20(10): 2023-2035, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781755

RESUMEN

Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.


Asunto(s)
Arabidopsis , Oryza , Oxidorreductasas , Infertilidad Vegetal , Polen , Arabidopsis/genética , Arabidopsis/fisiología , Colina/metabolismo , Glucosa/metabolismo , Metanol/metabolismo , Mutación , Oryza/genética , Oryza/fisiología , Oxidorreductasas/genética , Infertilidad Vegetal/genética , Polen/genética , Polen/crecimiento & desarrollo , Temperatura , Factores de Transcripción/genética
2.
Brain Res Bull ; 185: 174-192, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537568

RESUMEN

Neuropathic and inflammatory pain are major clinical challenges due to their ambiguous mechanisms and limited treatment approaches. N-methyl-D-aspartate receptor (NMDAR) and calcium-calmodulin-dependent protein kinase II (CaMKII) are responsible for nerve system sensation and are required for the induction and maintenance of pain. However, the roles of NMDAR and CaMKII in regulating orofacial pain are still less well known. Here, we established a neuropathic pain model by transecting a mouse inferior alveolar nerve (IAN) and an inflammatory pain model by injecting complete Freund's adjuvant (CFA) into its whisker pad. The Cre/loxp site-specific recombination system was used to conditionally knock out (KO) NR2B in the trigeminal ganglion (TG). Von Frey filament behavioral tests showed that IANX and CFA-induced mechanical allodynia were altered in NR2B-deficient mice. CFA upregulated CaMKIIα and CaMKIIß in the mouse TG and spinal trigeminal caudate nucleus (SpVc). CaMKIIα first decreased and then increased in the TG after IANX, and CaMKIIß decreased in the TG and SpVc. CFA and IANX both greatly enhanced the expression of phospho (p)-NR2B, p-CaMKII, cyclic adenosine monophosphate (cAMP), p-ERK, and p-cAMP response element binding protein (CREB) in the TG and SpVc. These neurochemical signal pathway alterations were reversed by the conditional KO of NR2B and inhibition of CaMKII. Similarly, IANX- and CFA-related behavioral alterations were reversed by intra-ganglionic (i.g.) -application of inhibitors of CaMKII, cAMP, and ERK. These findings revealed novel molecular signaling pathways (NR2B-CaMKII-cAMP-ERK-CREB) in the TG- and SpVc-derived latent subsequent peripheral and spinal central sensitization under nerve injury and inflammation, which might be beneficial for the treatment of orofacial allodynia.


Asunto(s)
Hiperalgesia , Neuralgia , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Neuralgia/metabolismo , Fosforilación , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Planta ; 250(2): 535-548, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31111205

RESUMEN

MAIN CONCLUSION: ACOS5, OsACOS12 and PpACOS6 are all capable of fatty acyl-CoA synthetase activity but exhibit different substrate preferences. The transcriptional regulation of ACOS for sporopollenin synthesis appears to have been conserved in Physcomitrella, rice and Arabidopsis during evolution. Sporopollenin is the major constituent of spore and pollen exines. In Arabidopsis, acyl-CoA synthetase 5 (ACOS5) is an essential enzyme for sporopollenin synthesis, and its orthologues are PpACOS6 from the moss Physcomitrella and OsACOS12 from monocot rice. However, knowledge regarding the evolutionary conservation and divergence of the ACOS gene in sporopollenin synthesis remains limited. In this study, we analysed the function and regulation of PpACOS6 and OsACOS12. A complementation test showed that OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis, while PpACOS6 did not rescue the acos5 phenotype. ACOS5, PpACOS6 and OsACOS12 all complemented the acyl-CoA synthetase-deficient yeast strain (YB525) phenotype, although they exhibited different substrate preferences. To understand the conservation of sporopollenin synthesis regulation, we constructed two constructs with ACOS5 driven by the OsACOS12 or PpACOS6 promoter. Both constructs could restore the fertility of acos5 plants. The MYB transcription factor MS188 from Arabidopsis directly regulates ACOS5. We found that MS188 could also bind the promoters of OsACOS12 and PpACOS6 and activate the genes driven by the promoters, suggesting that the transcriptional regulation of these genes was similar to that of ACOS5. These results show that the ACOS gene promoter region from Physcomitrella, rice and Arabidopsis has been functionally conserved during evolution, while the chain lengths of fatty acid-derived monomers of sporopollenin vary in different plant species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Bryopsida/enzimología , Coenzima A Ligasas/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Biopolímeros/biosíntesis , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/ultraestructura , Carotenoides/biosíntesis , Coenzima A Ligasas/genética , Genes Reporteros , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/ultraestructura , Filogenia , Infertilidad Vegetal , Proteínas de Plantas/genética , Polen/enzimología , Polen/genética , Polen/crecimiento & desarrollo , Polen/ultraestructura , Alineación de Secuencia , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Mitochondrial DNA B Resour ; 4(2): 2129-2130, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-33365439

RESUMEN

Reineckia carnea is an important horticultural and medicinal plant in East Asia. Here, we determined the first complete chloroplast genome of R. carnea using genome skimming approach. The cp genome was 157,059 bp long, with a large single-copy region (LSC) of 85,474 bp and a small single-copy region (SSC) of 18,535 bp separated by a pair of inverted repeats (IRs) of 26,525 bp. It encodes 132 genes, including 86 protein-coding genes, 38 tRNA genes, and eight ribosomal RNA genes. The phylogenetic analysis indicated that R. carnea is close related to Rohdea chinensis.

5.
Shanghai Kou Qiang Yi Xue ; 27(6): 633-636, 2018 Dec.
Artículo en Chino | MEDLINE | ID: mdl-30899946

RESUMEN

PURPOSE: To observe the curative effect of rhubarb extract on severe periodontitis in patients with diabetes mellitus. METHODS: Fifty patients with severe periodontitis and diabetes mellitus were randomly divided into 2 groups. The patients in the control group were treated with scaling and root planning(SRP); while patients in the experimental group were treated with SRP followed by topical use of rhubarb extract. Periodontal index probing pocket depth (PD), clinical attachment level (CAL) and bleeding on probing (BOP) were examined before periodontal treatment,6 weeks and 12 weeks after treatment. SPSS 20.0 software package was used for statistical analysis. RESULTS: Significant improvement in periodontal condition was noted in both groups after treatment, and the degree of improvement was greater in the experimental group than in the control group. No adverse event during the entire study was found. CONCLUSIONS: Topical application of rhubarb extract for the treatment of severe periodontitis with diabetes has good clinical efficacy.


Asunto(s)
Periodontitis Crónica , Raspado Dental , Diabetes Mellitus , Periodontitis , Extractos Vegetales , Rheum , Aplanamiento de la Raíz , Estudios de Seguimiento , Humanos , Pérdida de la Inserción Periodontal , Índice Periodontal , Bolsa Periodontal , Periodontitis/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Rheum/química , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA