Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 15(4): 2103-2114, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305429

RESUMEN

This study aims to introduce a new liposome to co-load Antarctic krill oil (AKO) and quercetin (QC) as a new delivery formulation to enrich the application of AKO and QC. The stability of liposomes could be increased by adding an appropriate quantity of soy lecithin (SL). Changes in the composition of the phospholipid membrane were strongly correlated with the stability and release capacity of loaded nutrients. SL2@QC/AKO-lips displayed a nearly spherical shape with higher oxidative stability and controlled the in vitro release performance of QC in simulated digestion. Moreover, in vitro studies indicated that new liposomes had no adverse effects on cell viability and could combine the physiological functions of AKO and QC to protect the HepG2 cells from oleic acid-induced steatosis and oxidative stress. The findings demonstrated that the AKO and QC co-loaded liposomes prepared with the addition of an appropriate quantity of SL had excellent loading efficiency of AKO/QC and good oxidative stability, security and functional activity.


Asunto(s)
Euphausiacea , Liposomas , Animales , Liposomas/farmacología , Quercetina/farmacología , Ácido Oléico/farmacología , Aceites/farmacología , Estrés Oxidativo , Lecitinas
2.
Nat Commun ; 14(1): 8281, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092825

RESUMEN

Metabolic oligosaccharide engineering (MOE) is a classical chemical approach to perturb, profile and perceive glycans in physiological systems, but probes upon bioorthogonal reaction require accessibility and the background signal readout makes it challenging to achieve glycan quantification. Here we develop SeMOE, a selenium-based metabolic oligosaccharide engineering strategy that concisely combines elemental analysis and MOE,enabling the mass spectrometric imaging of glycome. We also demonstrate that the new-to-nature SeMOE probes allow for detection, quantitative measurement and visualization of glycans in diverse biological contexts. We also show that chemical reporters on conventional MOE can be integrated into a bifunctional SeMOE probe to provide multimodality signal readouts. SeMOE thus provides a convenient and simplified method to explore the glyco-world.


Asunto(s)
Selenio , Polisacáridos/metabolismo , Oligosacáridos/metabolismo , Ingeniería Metabólica , Espectrometría de Masas
3.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4902-4907, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802832

RESUMEN

Malaria, one of the major global public health events, is a leading cause of mortality and morbidity among children and adults in tropical and subtropical regions(mainly in sub-Saharan Africa), threatening human health. It is well known that malaria can cause various complications including anemia, blackwater fever, cerebral malaria, and kidney damage. Conventionally, cardiac involvement has not been listed as a common reason affecting morbidity and mortality of malaria, which may be related to ignored cases or insufficient diagnosis. However, the serious clinical consequences such as acute coronary syndrome, heart failure, and malignant arrhythmia caused by malaria have aroused great concern. At present, antimalarials are commonly used for treating malaria in clinical practice. However, inappropriate medication can increase the risk of cardiovascular diseases and cause severe consequences. This review summarized the research advances in the cardiovascular complications including acute myocardial infarction, arrhythmia, hypertension, heart failure, and myocarditis in malaria. The possible mechanisms of cardiovascular diseases caused by malaria were systematically expounded from the hypotheses of cell adhesion, inflammation and cytokines, myocardial apoptosis induced by plasmodium toxin, cardiac injury secondary to acute renal failure, and thrombosis. Furthermore, the effects of quinolines, nucleoprotein synthesis inhibitors, and artemisinin and its derivatives on cardiac structure and function were summarized. Compared with the cardiac toxicity of quinolines in antimalarial therapy, the adverse effects of artemisinin-derived drugs on heart have not been reported in clinical studies. More importantly, the artemisinin-derived drugs demonstrate favorable application prospects in the prevention and treatment of cardiovascular diseases, and are expected to play a role in the treatment of malaria patients with cardiovascular diseases. This review provides reference for the prevention and treatment of malaria-related cardiovascular complications as well as the safe application of antimalarials.


Asunto(s)
Antimaláricos , Artemisininas , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Malaria Cerebral , Quinolinas , Niño , Adulto , Humanos , Antimaláricos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Artemisininas/farmacología , Malaria Cerebral/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Arritmias Cardíacas/tratamiento farmacológico
4.
Contemp Clin Trials Commun ; 36: 101214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37842323

RESUMEN

Introduction: Negative symptoms and cognitive impairment are common residual symptoms of schizophrenia that seriously affect the quality of life and social function of patients. The intervention of residual symptoms is an important part of schizophrenia rehabilitation. Traditional Chinese exercise has been applied as a supplementary rehabilitation method for schizophrenia. However, research on its use and pertinence in the rehabilitation of residual symptoms remains lacking. In this study, we will verify the intervention effect of a new method, namely, shen-based qigong exercise, on the residual symptoms of schizophrenia, in the hopes of finding a safe and effective rehabilitation method for the residual symptoms of schizophrenia. Methods: This is a single-centre randomised controlled trial. A total of 60 schizophrenics who meet the criteria will be randomly divided into the control and intervention groups in accordance with the ratio of 1:1. Conventional drug treatment will remain unchanged in both groups. In this case, the control group will be given daily rehabilitation, whereas the intervention group will be given daily rehabilitation and shen-based qigong exercise intervention. The intervention period will be 12 weeks. The primary outcome will be negative symptoms assessed by the Scale for the Assessment of Negative Symptoms. The secondary outcome will be the global cognitive function assessed by the Repeatable Battery for the Assessment of Neuropsychological Status and event-related potential P300. Other outcomes will include specific cognitive domain (i.e. working memory), quality of life and social function. The results will be measured within 1 week before and after the intervention. Discussion: The results of this study will likely help find an economical and convenient rehabilitation method for the residual symptoms of schizophrenia and, at the same time, may promote the popularisation and application of traditional Chinese exercises and traditional Chinese medicine theories in the treatment of mental diseases. Trial registration: ClinicalTrials.gov registry number: NCT05310955.

5.
Medicine (Baltimore) ; 102(34): e34883, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37653836

RESUMEN

The study aimed to elucidate the effective chemical composition and molecular mechanism of rheumatoid arthritis (RA) treatment with Jishe Qushi capsules (JSQS) and perform clinical validation. The effective chemical components were screened by a database. We used Cytoscape software to construct the key target-RA composite target network of JSQS. Gene Ontology biofunctional analysis and Kyoto encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the key targets, followed by molecular docking validation of core key targets. Ninety-nine patients chosen were divided into 49 cases in the treatment group and 50 cases in the control group according to the random number table method. The control group was treated with the combination of methotrexate (MTX) plus Glucosidorum Tripterygll Totorum. The treatment group was treated with MTX plus JSQS. The treatment effects of the 2 groups were evaluated. A total of 118 key anti-RA targets were obtained for JSQS. Quercetin in Panax notoginseng, vanillic acid, scopoletin, physcion in Gardneria angustifolia, 3,5-dimethyl-4-hydroxybenzaldehyde in Zaocys dhumnades, kaempferol in Radix Paeoniae Alba, and protocatechuic aldehyde in Cibotium barometz were the main active chemical components in the composite target network. Topology analysis yields core key targets, such as TP53, INS, IL6, VEGFA, MYC, CASP3, ESR1, EGF, CCND1, PPARG, ERBB2, NFKBIA, TLR4, RELA, and CASP8, and the results of KEGG enrichment analysis showed that JSQS mainly works through pathways in cancer, phosphatidylinositol-3-kinaseRAC-serine/threonine-protein kinase signaling, and mitogen-activated protein kinase (MAPK) signaling pathway, and aryl hydrocarbon receptor nuclear translocator signaling pathway. Molecular docking results showed that the binding fraction of PPARG, VEGFA and the effective active ingredients of ridged snake dispelling capsule was >70. In the clinical trial, morning stiffness, joint pain, and VAS scores of post-treatment in the treatment group were lower than those in the control group (P < .05). Additionally, ESR, CRP, RF, anti-CCP, TNF-α, IL-6, IL-17, and Th17/Treg were lower in the treatment group than in the control group (P < .05). JSQS exert multicomponent, multipathway, and multitarget synergistic actions in RA treatment. It can significantly improve the clinical symptoms and quality of life and delay the progression of RA disease.


Asunto(s)
Artritis Reumatoide , Farmacología en Red , Humanos , Artritis Reumatoide/tratamiento farmacológico , Cápsulas , Metotrexato/uso terapéutico , Simulación del Acoplamiento Molecular , PPAR gamma , Calidad de Vida
6.
Zhongguo Zhong Yao Za Zhi ; 48(1): 5-12, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725252

RESUMEN

Multiple sclerosis(MS) shows the pathological characteristics of "inflammatory injury of white matter" and "myelin repair disability" in the central nervous system(CNS). It is very essential for MS treatment and reduction of disease burden to strengthen repair, improve function, and reduce disability. Accordingly, different from the simple immunosuppression, we believe that key to strengthening remyelination and maintaining the "damage-repair" homeostasis of tissue is to change the current one-way immunosuppression strategy and achieve the "moderate pro-inflammation-effective inflammation removal" homeostasis. Traditional Chinese medicine shows huge potential in this strategy. Through literature research, this study summarized the research on remyelination, discussed the "mode-rate pro-inflammation-effective inflammation removal" homeostasis and the "damage-repair" homeostasis based on microglia, and summed up the key links in remyelination in MS. This review is expected to lay a theoretical basis for improving the function of MS patients and guide the application of traditional Chinese medicine.


Asunto(s)
Esclerosis Múltiple , Remielinización , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Remielinización/fisiología , Vaina de Mielina/patología , Inflamación/tratamiento farmacológico , Homeostasis
7.
Phytother Res ; 37(5): 1864-1882, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36740450

RESUMEN

Shenlian (SL) extract has been proven to be effective in the prevention and treatment of atherosclerosis and myocardial ischemia. However, the function and molecular mechanisms of SL on coronary artery no-reflow have not been fully elucidated. This study was designed to investigate the contribution of SL extract in repressing excessive mitochondrial autophagy to protect the mitochondrial function and prevent coronary artery no-reflow. The improvement of SL on coronary artery no-reflow was observed in vivo experiments and the molecular mechanisms were further explored through vitro experiments. First, a coronary artery no-reflow rat model was built by ligating the left anterior descending coronary artery for 2 hr of ischemia, followed by 24 hr of reperfusion. Thioflavin S (6%, 1 ml/kg) was injected into the inferior vena cava to mark the no-reflow area. Transmission electron microscopy was performed to observe the cellular structure, mitochondrial structure, and mitochondrial autophagy of the endothelial cells. Immunofluorescence was used to observe the microvascular barrier function and microvascular inflammation. Cardiac microvascular endothelial cells (CMECs) were isolated from rats. The CMECs were deprived of oxygen-glucose deprivation (OGD) for 2 hr and reoxygenated for 4 hr to mimic the Myocardial ischemia-reperfusion (MI/R) injury-induced coronary artery no-reflow in vitro. Mitochondrial membrane potential was assessed using JC-1 dye. Intracellular adenosine triphosphate (ATP) levels were determined using an ATP assay kit. The cell total reactive oxygen species (ROS) levels and cell apoptosis rate were analyzed by flow cytometry. Colocalization of mitochondria and lysosomes indirectly indicated mitophagy. The representative ultrastructural morphologies of the autophagosomes and autolysosomes were also observed under transmission electron microscopy. The mitochondrial autophagy-related proteins (LC3II/I, P62, PINK, and Parkin) were analyzed using Western blot analysis. In vivo, results showed that, compared with the model group, SL could reduce the no-reflow area from 37.04 ± 9.67% to 18.31 ± 4.01% (1.08 g·kg-1 SL), 13.79 ± 4.77% (2.16 g·kg-1 SL), and 12.67 ± 2.47% (4.32 g·kg-1 SL). The extract also significantly increased the left ventricular ejection fraction (EF) and left ventricular fractional shortening (FS) (p < 0.05 or p < 0.01). The fluorescence intensities of VE-cadherin, which is a junctional protein that preserves the microvascular barrier function, decreased to ~74.05% of the baseline levels in the no-reflow rats and increased to 89.87%(1.08 g·kg-1 SL), 82.23% (2.16 g·kg-1 SL), and 89.69% (4.32 g·kg-1 SL) of the baseline levels by SL treatment. SL administration repressed the neutrophil migration into the myocardium. The oxygen-glucose deprivation/reoxygenation (OGD/R) model was induced in vitro to mimic microvascular ischemia-reperfusion injury. The impaired mitochondrial function after OGD/R injury led to decreased ATP production, calcium overload, the excessive opening of the Mitochondrial Permeability Transition Pore, decreased mitochondrial membrane potential, and reduced ROS scavenging ability (p < 0.05 or p < 0.01). The normal autophagosomes (double-membrane vacuoles with autophagic content) in the sham group were rarely found. The large morphology and autophagosomes were frequently observed in the model group. By contrast, SL inhibited the excessive activation of mitochondrial autophagy. The mitochondrial autophagy regulated by the PINK/Parkin pathway was excessively activated. However, administration of SL prevented the activation of the PINK/Parkin pathway and inhibited excessive mitochondrial autophagy to regulate mitochondrial dysfunction. Results also demonstrated that mitochondrial dysfunction stimulated endothelial cell barrier dysfunction, but Evans blue transmission was significantly decreased and transmembrane resistance was increased significantly by SL treatment (p < 0.05 or p < 0.01). Carbonylcyanide-3-chlorophenylhydrazone (CCCP) could activate the PINK/Parkin pathway. CCCP reversed the regulation of SL on mitochondrial autophagy and mitochondrial function. SL could alleviate coronary artery no-reflow by protecting the microvasculature by regulating mitochondrial function. The underlying mechanism was related to decreased mitochondrial autophagy by the PINK/Parkin pathway.


Asunto(s)
Vasos Coronarios , Daño por Reperfusión Miocárdica , Ratas , Animales , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Volumen Sistólico , Función Ventricular Izquierda , Autofagia , Mitocondrias , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología , Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Glucosa/metabolismo
8.
Biomed Pharmacother ; 157: 113933, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399826

RESUMEN

Nasal administration of Traditional Chinese medicine (TCM) has a long history of applications. With the gradual maturing of technology and pharmacological advances, nasal preparations of TCM have undergone significant changes. Nasal TCM formulations are used not only for treatment of pneumonia, asthma, sinusitis and allergic rhinitis but also Alzheimer's disease and Parkinson's disease, as antidepressants and antiepileptics, and in ischemia reperfusion. However, according to the analysis of nasal preparations of TCM currently on the market, most of them were compound preparations, which were used to treat allergic rhinitis (AR), common cold, headache and other local treatments, with a small range of diseases. At the same time, the dosage forms were mainly traditional dosage forms, aerosols and sprays, but there were no new dosage forms, which can not meet the clinical needs in terms of variety number, variety diversity and disease types. In this manuscript, we reviewed the development and applications of different nasal preparations of TCM from the aspects of nasal structure, origin, factors affecting absorption and common dosage forms, pharmacodynamics, targeting of nasal delivery and safety. In the near future, we expect that more nasal preparations of Chinese medicine with independent intellectual property rights will be marketed to meet the needs of clinical disease management.


Asunto(s)
Medicamentos Herbarios Chinos , Rinitis Alérgica , Humanos , Administración Intranasal , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Rinitis Alérgica/tratamiento farmacológico
10.
Front Microbiol ; 13: 1052377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504766

RESUMEN

Ganoderma lucidum is a traditional Chinese medicine and its major active ingredients are ganoderma triterpenoids (GTs). To screen for transcription factors (TFs) that involved in the biosynthetic pathway of GTs in G. lucidum, the chemical composition in mycelia, primordium and fruiting body were analyzed, and the transcriptomes of mycelia induced by methyl jasmonate (MeJA) were analyzed. In addition, the expression level data of MeJA-responsive TFs in mycelia, primordia and fruiting body were downloaded from the database, and the correlation analysis was carried out between their expression profiles and the content of total triterpenoids. The results showed that a total of 89 components were identified, and the content of total triterpenoids was the highest in primordium, followed by fruiting body and mycelia. There were 103 differentially expressed TFs that response to MeJA-induction including 95 upregulated and 8 downregulated genes. These TFs were classified into 22 families including C2H2 (15), TFII-related (12), HTH (9), fungal (8), bZIP (6), HMG (5), DADS (2), etc. Correlation analysis showed that the expression level of GL23559 (MADS), GL26472 (HTH), and GL31187 (HMG) showed a positive correlation with the GTs content, respectively. While the expression level of GL25628 (fungal) and GL26980 (PHD) showed a negative correlation with the GTs content, respectively. Furthermore, the over expression of the Glmhr1 gene (GL25628) in Pichia pastoris GS115 indicated that it might be a negative regulator of GT biosynthesis through decreasing the production of lanosterol. This study provided useful information for a better understanding of the regulation of TFs involved in GT biosynthesis and fungal growth in G. lucidum.

11.
Food Funct ; 13(18): 9602-9609, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36000551

RESUMEN

The preventive and therapeutic effects of herbal supplementation containing Ginseng, Lilii Bulbus, and Poria (GLP) on inflammation and oxidative stress in healthy adults have been demonstrated in our previous studies. However, the underlying mechanisms of organism protection by GLP remain unclarified, and few studies have used metabolomics to investigate comprehensive changes before and after GLP supplementation. Based on previous research, we conducted a placebo-controlled trial among 82 healthy adults in Wuhan, China, using a metabolomics approach with ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) and multivariate statistical methods to analyze serum metabolite alterations in participants before and after GLP supplementation. Furthermore, 14 discriminant metabolites related to lipid metabolism, inflammation and oxidative stress, energy metabolism, and coenzyme A metabolism were significantly different between the before- and after-GLP groups (P < 0.0001). Nine metabolites were significantly decreased in the serum samples from the after-GLP group compared with the before-GLP group, while five metabolites were significantly increased. These metabolites could be critical components associated with the anti-inflammatory, antioxidant, and hypolipidemic activities of GLP, indicating the potential complementary role of GLP supplements in the primary prevention of dysfunctional metabolism caused by potential diseases such as cardiovascular disease. This study provides a valuable reference for cardiovascular health protection and disease prevention.


Asunto(s)
Panax , Poria , Adulto , Antioxidantes , Cromatografía Líquida de Alta Presión/métodos , Coenzima A , Suplementos Dietéticos , Humanos , Inflamación , Metaboloma , Metabolómica/métodos , Panax/química , Espectrometría de Masas en Tándem
12.
Phytomedicine ; 106: 154309, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35994846

RESUMEN

BACKGROUND: Inefficient differentiation of oligodendrocyte precursor cells (OPCs) is one of the significant pathological obstacles of myelin repair and provides an essential therapeutic target against behavioral dysfunction in various neurodegenerative diseases, especially in secondary progressive multiple sclerosis (SPMS). Ginsenoside Rg1 (Rg1) has traditionally been recognized as a protector of neuronal damages, preventing its degeneration. PURPOSE: We investigated the effects of Rg1 on myelin regeneration-mediated by OPCs and its therapeutic significance in SPMS. METHODS: A cuprizone (CPZ) model was established and then administered with Rg1 specific for evaluations of functional recovery and remyelination. In vitro, the primary mouse OPCs were isolated and cultured for examining their ability of myelin repair. Furthermore, a chronic experimental autoimmune encephalomyelitis (EAE) model was utilized to assess the therapeutic value on SPMS. RESULTS: We found that Rg1 promoted functional recovery of the demyelinated mice, including spatial memory, motor function, and anxiety-like behavior. Histologically, Rg1 enhanced myelin-genesis as proven by myelin staining and microstructures of myelin observed by transmission electron microscope. Furthermore, Rg1 significantly increased Olig2+ oligodendrocyte lineage cells in callosum, implying that the pro-remyelination effect of Rg1 was closely correlated to the enhanced differentiation of OPCs. We further demonstrated that Rg1 increased the survival and proliferation of OPCs as well as induced maturation in oligodendrocytes (OLs). Molecular analysis showed that Rg1 transduced the pro-differentiation signaling programmed by the GSK3ß/ß-Catenin pathway. Notably, relying on its pro-remyelination effects, Rg1 ameliorated severity and histopathology of EAE disease. CONCLUSION: By paving the way for OPCs differentiation, Rg1 could maintain the integrity of myelin and is a promising candidate for functional recovery in demyelinating diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Precursoras de Oligodendrocitos , Remielinización , Animales , Diferenciación Celular , Cuprizona/metabolismo , Cuprizona/farmacología , Cuprizona/uso terapéutico , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ginsenósidos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Remielinización/fisiología , beta Catenina/metabolismo
13.
Front Pharmacol ; 13: 948678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873589

RESUMEN

The Wuji pill, also called Wuji Wan (WJW), is an effective traditional medicine for the clinical treatment of irritable bowel syndrome (IBS). It is principally composed of Rhizoma Coptidis, Fructus Evodiae Rutaecarpae, and Radix Paeoniae Alba. There have been no reports on the pharmacokinetics of WJW on IBS. Because it is more meaningful to study pharmacokinetics in relation to specific pathological conditions, our study investigated the pharmacokinetic differences of five representative components (berberine, palmatine, evodiamine, rutaecarpine, and paeoniflorin) in normal rats and chronic visceral hypersensitivity IBS (CVH-IBS) model rats after single dose and multiple doses of WJW using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Transmission electron microscopy, immunohistochemistry, and immunofluorescence were used to explore mechanisms behind the pharmacokinetic differences in terms of tight junction proteins (Occludin and ZO-1), myosin light chain kinase (MLCK), and transporters including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and multidrug resistance associated protein 2 (MRP2) in rat colons. After a single dose, for all components except rutaecarpine, significant differences were observed between normal and model groups. Compared with normal group, T1/2 and AUC0-t of berberine and palmatine in model group increased significantly (562.5 ± 237.2 vs. 1,384.9 ± 712.4 min, 733.8 ± 67.4 vs. 1,532.4 ± 612.7 min; 5,443.0 ± 1,405.8 vs. 9,930.8 ± 2,304.5 min·ng/ml, 2,365.5 ± 410.6 vs. 3,527.0 ± 717.8 min·ng/ml), while Cl/F decreased (840.7 ± 250.8 vs. 397.3 ± 142.7 L/h/kg, 427.7 ± 89.4 vs. 288.9 ± 114.4 L/h/kg). Cmax and AUC0-t of evodiamine in model group increased significantly (1.4 ± 0.6 vs. 2.4 ± 0.7 ng/ml; 573 ± 45.3 vs. 733.9 ± 160.2 min·ng/ml), while T1/2, Tmax, Cl/F, and Vd/F had no significant difference. Tmax and AUC0-t of paeoniflorin in model group increased significantly (21.0 ± 8.2 vs. 80.0 ± 45.8 min; 15,428.9 ± 5,063.6 vs. 33,140.6 ± 5,613.9 min·ng/ml), while Cl/F decreased (110.5 ± 48.1 vs. 43.3 ± 9.5 L/h/kg). However, after multiple doses, all five components showed significant differences between normal and model groups. Moreover, these differences were related to tight junction damage and the differential expression of transporters in the colon, suggesting that dose adjustment might be required during administration of WJW in the clinical treatment of IBS.

14.
Artículo en Inglés | MEDLINE | ID: mdl-35815277

RESUMEN

While randomized controlled trials (RCTs) are the gold standard for evidence-based medicine, they do not always reflect the real condition of patients in the real-world setting, which limits their generalizability and external validity. Real-world evidence (RWE), generated during routine clinical practice, is increasingly important in determining external effectiveness of the tightly controlled conditions of RCTs and is well recognized as a valuable complement to RCTs by regulatory bodies currently. Since it could provide new ideas and methods for clinical efficacy and safety evaluation of traditional Chinese medicine (TCM) and high-quality evidence support, real-world study (RWS) has received great attention in the field of medicine, especially in the field of TCM. RWS has shown desirable adaptability in the clinical diagnosis and treatment practice of traditional Chinese medicine. Consequently, it is increasingly essential for physicians and researchers to understand how RWE can be used alongside clinical trial data on TCM. Here, we discuss what real-world study is and outline the benefits and limitations of real-world study. Furthermore, using examples from TCM treatment on cancer, including Chinese herbal medicine, acupuncture, moxibustion, integrated TCM and Western medicine treatment, and other treatments, we elaborate how RWE can be used to help inform treatment decisions when doctoring patients with cancer in the clinic.

15.
J Diabetes Res ; 2022: 6587221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799947

RESUMEN

Objectives: Tai chi (TC) is a potential complementary treatment for type 2 diabetes mellitus (T2DM). This overview systematically summarizes and evaluates the existing evidence of TC in the treatment of T2DM. Methods: Systematic reviews (SRs)/meta-analyses (MAs) on TC interventions for T2DM were comprehensively searched in seven databases. Methodological quality, risk of bias, reporting quality, and quality of evidence were assessed using the Assessment of Multiple Systematic Reviews 2 (AMSTAR-2), the Risk of Bias in Systematic (ROBIS) scale, the list of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results: Eight published SRs/MAs were included in our study. Based on the methodology and quality of evidence assessment, all SRs/MAs are considered to be of very low quality, and only 1 SR/MA has been assessed as low risk of bias, and none of the SR/MA has been fully reported on the checklist. A total of 65 outcome indicators extracted from the included SRs/MAs were evaluated, and only 1 item was assessed as high quality. Conclusions: TC may be an effective and safe complementary treatment for T2DM. However, this conclusion must be treated with caution because the quality of the evidence provided by the included SRs/MAs is generally low.


Asunto(s)
Diabetes Mellitus Tipo 2 , Taichi Chuan , Sesgo , Lista de Verificación , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Humanos , Metaanálisis como Asunto , Revisiones Sistemáticas como Asunto
16.
J Sep Sci ; 45(13): 2140-2147, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35396803

RESUMEN

The isomerism of glucaric acids and the complexity of the composition of Leonurus japonicus Houtt. increased the difficulty of the separation of glucaric acids from the herb. In the present study, three glucaric acids were isolated from Leonurus japonicus Houtt. by using high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography. Cation exchange resin chromatography was applied to remove the alkaloids and enrich the glucaric acid fractions. Preliminary separation of the glucaric acid extract by high-speed countercurrent chromatography was carried out at 45℃ by using an optimized solvent system of ethyl acetate/n-butanol/formic acid/water (1:1:0.01:2, v/v/v/v) with satisfied stationary phase retention and separation factor. The semi-preparative high-performance liquid chromatography was used for further separation and purification of the target fractions, and three monomeric compounds were obtained with purities of 90.0, 91.0, and 95.3%. UV spectroscopy, NMR spectroscopy, and mass spectrometry were employed to identify their structures, which were assigned as 2-syringyl glucaric acid, 2,4-disyringyl glucaric acid, and 3,4-disyringyl glucaric acid, respectively, and 2,4-disyringyl glucaric acid was reported for the first time.


Asunto(s)
Distribución en Contracorriente , Leonurus , Cromatografía Líquida de Alta Presión/métodos , Distribución en Contracorriente/métodos , Ácido Glucárico , Leonurus/química , Extractos Vegetales/química , Solventes/química
17.
Cell Commun Signal ; 20(1): 37, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331268

RESUMEN

BACKGROUND: Lung cancer remains a major cause of cancer-related mortality throughout the world at present. Repositioning of existing drugs for other diseases is a promising strategy for cancer therapies, which may rapidly advance potentially promising agents into clinical trials and cut down the cost of drug development. Ciclopirox (CPX), an iron chelator commonly used to treat fungal infections, which has recently been shown to have antitumor activity against a variety of cancers including both solid tumors and hematological malignancies in vitro and in vivo. However, the effect of CPX on non-small cell lung cancer (NSCLC) and the underlying mechanism is still unclear. METHODS: CCK-8, clonal formation test and cell cycle detection were used to observe the effect of inhibitor on the proliferation ability of NSCLC cells. The effects of CPX on the metastasis ability of NSCLC cells were analyzed by Transwell assays. Apoptosis assay was used to observe the level of cells apoptosis. The role of CPX in energy metabolism of NSCLC cells was investigated by reactive oxygen species (ROS) detection, glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) experiments. Western blot was used to examine the protein changes. RESULTS: We report that CPX inhibits NSCLC cell migration and invasion abilities through inhibiting the epithelial-mesenchymal transition, impairing cellular bioenergetics, and promoting reactive oxygen species to activate endoplasmic reticulum (ER) stress-induced apoptotic cell death. Moreover, CPX intraperitoneal injection can significantly inhibit NSCLC growth in vivo in a xenograft model. CONCLUSIONS: Our study revealed that CPX targets cellular bioenergetics and activates unfolded protein response in ER to drive apoptosis in NSCLC cells, indicating that CPX may be a potential therapeutic drug for the treatment of NSCLC. Video Abstract.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Ciclopirox/farmacología , Ciclopirox/uso terapéutico , Metabolismo Energético , Humanos , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo
18.
Ecotoxicol Environ Saf ; 234: 113379, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278994

RESUMEN

Exposure to diesel exhaust particles (DEP) increases the risk of ischemic heart disease, especially heart attacks and ischemic/thrombotic strokes. Shengmai Yin (SMY) is a traditional Chinese medicine used to treat coronary heart disease. The aim of this study was to determine the protective role of SMY and the mechanism by which SMY affects DEP-induced cardiovascular injury. This study is expected to provide the basis for the development of an adaptive signature of SMY in the prevention of atherosclerotic cardiovascular disease and premature death from global air pollution exposure. We developed animal models of myocardial ischemia and atherosclerosis (AS) in response to DEP exposure. After SMY treatment, serum lipids returned to normal. Aortic plaque area and MMP9 expression were significantly reduced and collagen fiber expression increased after SMY treatment compared to DEP exposure alone. Thus, the risk of plaque formation and vulnerability is reduced. In addition, SMY improved left ventricular structure, morphology, function, blood flow, infarct area, myocardial damage, and ROS accumulation to varying degrees in ApoE-/- mice. These results indicate that the use of SMY is effective, to varying degrees, for the treatment of dyslipidemia, atherosclerosis, myocardial ischemia, and oxidative stress in ApoE-/- mice. SMY has a potential protective effect in DEP-aggravated AS in people with myocardial ischemia.

19.
J Ethnopharmacol ; 288: 114973, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-34990768

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlian extract (SL), extracted from Salvia miltiorrhiza Bunge and Andrographis paniculata (Burm. f.) Nees, has been proved to be effective in the prevention and treatment of atherosclerosis. Recently, we have partially elucidated the mechanisms involved in the therapeutic effects of SL on myocardial ischemia (MI). However, the underlying mechanisms remain largely unclear. AIM OF THE STUDY: This study aims to explore the potential molecular mechanism of SL on MI on the basis of network pharmacology. MATERIALS AND METHODS: First, the main active ingredients of SL were screened in the Traditional Chinese Medicine Integrated Database, and the MI-associated targets were collected from the DisGeNET database. Then, we used compound-target and target-pathway networks to uncover the therapeutic mechanisms of SL. On the basis of network pharmacology analysis results, we assessed the effects of SL in MI rat model and oxygen glucose deprivation model of H9c2 cells and validated the possible molecular mechanisms of SL on myocardial injury in vivo and in vitro. RESULTS: The network pharmacology results showed that 37 potential targets were recognized, including TNF-α, Bcl-2, STAT3, PI3K and MMP2. These results revealed that the possible targets of SL were involved in the regulation of inflammation and apoptosis signaling pathway. Then, in vivo experiments indicated that SL significantly reduced the myocardial infarction size of MI rats. Serum CK-MB, cTnT, CK, LDH, and AST levels were significantly decreased by SL (P < 0.05 or P < 0.01). In vitro, SL significantly increased H9c2 cell viability. The levels of inflammation factors including TNF-α and MMP2 were significantly decreased by SL (P < 0.05 or P < 0.01). TUNEL and Annexin V/propidium iodide assays indicated that SL could significantly decrease the cell apoptotic rate in vivo and in vitro (P < 0.05 or P < 0.01). The remarkable upregulation of anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax protein level further confirmed this result. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the PI3K-AKT and JAK2-STAT3 pathways were significantly enriched in SL. Compared with the model group, SL treatment significantly activated the PI3K-AKT and JAK2-STAT3 pathways in vivo and in vitro according to Western blot analyses. CONCLUSION: SL could protect the myocardium from MI injury. The underlying mechanism may be related to the reduction of inflammation and apoptosis by activating the PI3K/AKT and JAK2/STAT3 pathways.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Isquemia Miocárdica/tratamiento farmacológico , Andrographis paniculata/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Masculino , Farmacología en Red , Ratas , Ratas Wistar , Salvia miltiorrhiza/química , Transducción de Señal/efectos de los fármacos
20.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6720-6729, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604922

RESUMEN

As a classic prescription, Wuji Pills is composed of Coptidis Rhizoma, Euodiae Fructus Preparata, and stir-fried Paeo-niae Radix Alba at the ratio of 6∶1∶6. The practical application of it is limited compared with other famous Chinese medicine prescriptions. Only one company produces Wuji Pills in China. In this study, ultra-performance liquid chromatography quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to analyze and identify 26 identical compounds from Wuji Pills and drug-containing plasma of rats. Based on these components, 46 potential targets were screened out with network pharmacology methods, followed by the component-target network construction, Gene Ontology(GO) term enrichment, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and disease prediction. It was concluded that Wuji Pills acted on core targets such as PTGS2, PTSG1, NCOA2, HSP9 OAD1, and RXRA through magnoflorine, hydroxyevodiamine, daucosterol, and berberine and exerted pharmacodynamic effects through various pathways such as calcium ion signaling pathway, phosphatidylinositol-3-kinase-protein kinase B(PI3 K-Akt) signaling pathway, and vascular endothelial growth factor(VEGF) signaling pathway. Thus, Wuji Pills has therapeutic potential for Alzheimer's disease, diabetes mellitus, myocardial ischemia, and other diseases in addition to the conventional disease(irritable bowel syndrome, IBS). The above research results can provide a reference for the comprehensive interpretation of the pharmacodynamic basis of Wuji Pills and the expansion of clinical application. At the same time, a lot of components in serum and the in vivo transformed and metabolized components of Wuji Pills have similar structure and relative molecular weight. In theory, these components may show additive effects and the competitive/antagonistic effects on the same target. According to the hypothesis of "additive effect of multiple components for a single target" in traditional Chinese medicine, multiple similar components may exert the additive effects on local targets. This study can partly prove the scientificity of this hypothesis and provide laboratory evidence.


Asunto(s)
Medicamentos Herbarios Chinos , Animales , Ratas , Medicamentos Herbarios Chinos/farmacología , Espectrometría de Masas en Tándem , Farmacología en Red , Factor A de Crecimiento Endotelial Vascular , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA