Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118191, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621468

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY: The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS: Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS: Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS: MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Medicamentos Herbarios Chinos , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Ovariectomía , ARN Mensajero , Ratas Sprague-Dawley , Animales , Femenino , Osteogénesis/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , ARN Mensajero/metabolismo , Osteoporosis/tratamiento farmacológico , Ratas , Modelos Animales de Enfermedad , Células Cultivadas
2.
Phytomedicine ; 125: 155321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237514

RESUMEN

BACKGROUND: Traumatic Brain Injury (TBI) poses a considerable public health challenge, resulting in mortality, disability, and economic strain. Dehydroevodiamine (DEDM) is a natural compound derived from a traditional Chinese herbal medicine. Prior studies have substantiated the neuroprotective attributes of this compound in the context of TBI. Nevertheless, a comprehensive comprehension of the exact mechanisms responsible for its neuroprotective effects remains elusive. It is imperative to elucidate the precise intrinsic mechanisms underlying the neuroprotective actions of DEDM. PURPOSE: The aim of this investigation was to elucidate the mechanism underlying DEDM treatment in TBI utilizing both in vivo and in vitro models. Specifically, our focus was on comprehending the impact of DEDM on the Sirtuin1 (SIRT1) / Forkhead box O3 (FOXO3a) / Bcl-2-like protein 11 (Bim) pathway, a pivotal player in TBI-induced cell death attributed to oxidative stress. STUDY DESIGN AND METHODS: We established a TBI mouse model via the weight drop method. Following continuous intraperitoneal administration, we assessed the neurological dysfunction using the Modified Neurological Severity Score (mNSS) and behavioral assay, followed by sample collection. Secondary brain damage in mice was evaluated through Nissl staining, brain water content measurement, Evans blue detection, and Western blot assays. We scrutinized the expression levels of oxidative stress-related indicators and key proteins for apoptosis. The intricate mechanism of DEDM in TBI was further explored through immunofluorescence, Co-immunoprecipitation (Co-IP) assays, real-time quantitative PCR (RT-qPCR), dual-luciferase assays and western blotting. Additionally, we further investigated the specific therapeutic mechanism of DEDM in an oxidative stress cell model. RESULTS: The results indicated that DEDM effectively ameliorated oxidative stress and apoptosis post-TBI, mitigating neurological dysfunction and brain injury in mice. DEDM facilitated the deacetylation of FOXO3a by up-regulating the expression of the deacetylase SIRT1, consequently suppressing Bim expression. This mechanism contributed to the alleviation of neurological injury and symptom improvement in TBI-afflicted mice. Remarkably, SIRT1 emerged as a central mediator in the overall treatment mechanism. CONCLUSIONS: DEDM exerted significant neuroprotective effects on TBI mice by modulating the SIRT1/FOXO3a/Bim pathway. Our innovative research provides a basis for further exploration of the clinical therapeutic potential of DEDM in the context of TBI.


Asunto(s)
Alcaloides , Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Ratones , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Sirtuina 1/metabolismo , Proteína 11 Similar a Bcl2/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Apoptosis , Modelos Animales de Enfermedad
3.
J Agric Food Chem ; 63(45): 10013-21, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26488336

RESUMEN

Prevention of the occurrence and development of inflammation is a vital therapeutic strategy for treating acute lung injury (ALI). Increasing evidence has shown that a wealth of ingredients from natural foods and plants have potential anti-inflammatory activity. In the present study, mangiferin, a natural C-glucosyl xanthone that is primarily obtained from the peels and kernels of mango fruits and the bark of the Mangifera indica L. tree, alleviated the inflammatory responses in lipopolysaccharide (LPS)-induced ALI mice. Mangiferin-modified magnetic microspheres (MMs) were developed on the basis of click chemistry to capture the target proteins of mangiferin. Mass spectrometry and molecular docking identified 70 kDa heat-shock protein 5 (Hspa5) and tyrosine 3-monooxygenase (Ywhae) as mangiferin-binding proteins. Furthermore, an enzyme-linked immunosorbent assay (ELISA) indicated that mangiferin exerted its anti-inflammatory effect by binding Hspa5 and Ywhae to suppress downstream mitogen-activated protein kinase (MAPK) signaling pathways. Thoroughly revealing the mechanism and function of mangiferin will contribute to the development and utilization of agricultural resources from M. indica L.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Mangifera/química , Extractos Vegetales/administración & dosificación , Xantonas/administración & dosificación , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Lesión Pulmonar Aguda/genética , Animales , Química Clic/instrumentación , Química Clic/métodos , Chaperón BiP del Retículo Endoplásmico , Frutas/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA