Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Rep (Amst) ; 41: e00823, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38179180

RESUMEN

Salt lakes are significant components of global inland waters. Salt lake (SL) water can provide precious mineral resource for microbial growth. The prospect of utilizing diluted SL water for cultivation of a terrestrial oil-producing microalga Vischeria sp. WL1 was evaluated under laboratory conditions. Based on the detected mineral element composition, the water from Gouchi Salt Lake was diluted 2, 4, 6 and 8 folds and used with supplementation of additional nitrogen, phosphorus and iron (SL+ water). It was found that 4 folds diluted SL+ water was most favorable for biomass and oil production. When cultivated in this condition, Vischeria sp. WL1 gained a biomass yield of 0.82 g L-1 and an oil yield of 0.56 g L-1 after 24 days of cultivation, which is comparable to the optimum productivity we previously established. In addition, total monounsaturated fatty acid contents (64.4∼68.1 %) of the oils resulted from cultures in diluted SL+waters were higher than that in the control (55.5 %). It was also noteworthy that in all these cultures the oil contents (652.0∼681.0 mg g-1) accounted for the most of the biomass, which are far more than the protein and starch contents. This study demonstrates the feasibility of using SL water as a cost-effective mineral resource to cultivate microalgae for biomass and oil production.

2.
Environ Microbiol ; 23(1): 376-390, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196124

RESUMEN

Cyanobacteria are globally important primary producers and nitrogen fixers with high iron demands. Low ambient dissolved iron concentrations in many aquatic environments mean that these organisms must maintain sufficient and selective transport of iron into the cell. However, the nature of iron transport pathways through the cyanobacterial outer membrane remains obscure. Here we present multiple lines of experimental evidence that collectively support the existence of a novel class of substrate-selective iron porin, Slr1908, in the outer membrane of the cyanobacterium Synechocystis sp. PCC 6803. Elemental composition analysis and short-term iron uptake assays with mutants in Slr1908 reveal that this protein is primarily involved in inorganic iron uptake and contributes less to the accumulation of other metals. Homologues of Slr1908 are widely distributed in both freshwater and marine cyanobacteria, most notably in unicellular marine diazotrophs. Complementary experiments with a homologue of Slr1908 in Synechococcus sp. PCC 7002 restored the phenotype of Synechocystis knockdown mutants, showing that this siderophore producing species also possesses a porin with a similar function in Fe transport. The involvement of a substrate-selective porins in iron uptake may allow cyanobacteria to tightly control iron flux into the cell, particularly in environments where iron concentrations fluctuate.


Asunto(s)
Membrana Celular/metabolismo , Hierro/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/genética , Transporte Iónico , Porinas/genética , Porinas/metabolismo , Sideróforos/metabolismo , Synechocystis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA