Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1438-1445, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621927

RESUMEN

Based on the sarcoma receptor coactivator(Src)/phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, the mechanism of action of bulleyaconitine A in the treatment of bone destruction of experimental rheumatoid arthritis(RA) was explored. Firstly, key targets of RA bone destruction were collected through GeneCards, PharmGKB, and OMIM databa-ses. Potential targets of bulleyaconitine A were collected using SwissTargetPrediction and PharmMapper databases. Next, intersection targets were obtained by the Venny 2.1.0 platform. Protein-protein interaction(PPI) network and topology analysis were managed by utilizing the STRING database and Cytoscape 3.8.0. Then, Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted in the DAVID database. AutoDock Vina was applied to predict the molecular docking and binding ability of bulleyaconitine A with key targets. Finally, a receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model was established in vitro. Quantitative real-time polymerase chain reaction(qRT-PCR) was used to detect the mRNA expression levels of related targets, and immunofluorescence and Western blot were adopted to detect the protein expression level of key targets. It displayed that there was a total of 29 drug-disease targets, and Src was the core target of bulleyaconitine A in anti-RA bone destruction. Furthermore, KEGG enrichment analysis revealed that bulleyaconitine A may exert an anti-RA bone destruction effect by regulating the Src/PI3K/Akt signaling pathway. The molecular docking results showed that bulleyaconitine A had better bin-ding ability with Src, phosphatidylinositol-4,5-diphosphate 3-kinase(PIK3CA), and Akt1. The result of the experiment indicated that bulleyaconitine A not only dose-dependently inhibited the mRNA expression levels of osteoclast differentiation-related genes cathepsin K(CTSK) and matrix metalloproteinase-9(MMP-9)(P<0.01), but also significantly reduced the expression of p-c-Src, PI3K, as well as p-Akt in vitro osteoclasts(P<0.01). In summary, bulleyaconitine A may inhibit RA bone destruction by regulating the Src/PI3K/Akt signaling pathway. This study provides experimental support for the treatment of RA bone destruction with bulleyaconitine A and lays a foundation for the clinical application of bulleyaconitine A.


Asunto(s)
Aconitina/análogos & derivados , Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Simulación del Acoplamiento Molecular , Transducción de Señal , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , ARN Mensajero , Medicamentos Herbarios Chinos/farmacología
2.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38431908

RESUMEN

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Selenio , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Ratas , Animales , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroprotección/fisiología , Proteína 2 de Membrana Asociada a Vesículas , Selenoproteína P , Oxígeno/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Glucosa/metabolismo , Proteínas Qa-SNARE
3.
Phytomedicine ; 128: 155547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547615

RESUMEN

BACKGROUND: Emerging evidence suggests that pyroptosis, a form of programmed cell death, has been implicated in cancer progression. The involvement of specific proteins in pyroptosis is an area of growing interest. TOM20, an outer mitochondrial membrane protein, has recently garnered attention for its potential role in pyroptosis. Our previous study found that NBT could induce pyroptosis by ROS/JNK pathway in esophageal cancer cells. PURPOSE: This study aims to investigate whether NBT induces pyroptosis and verify whether such effects are involved in up-regulation of TOM20 in esophageal cancer cells. METHODS: The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) was used to analyze the clinical significance of GSDME in esophageal cancer. MTT assay, morphological observation and Western blot were performed to verify the roles of TOM20 and BAX in NBT-induced pyroptosis after CRISPR-Cas9-mediated knockout. Immunofluorescence was used to determine the subcellular locations of BAX and cytochrome c. MitoSOX Red was employed to assess the mitochondrial reactive oxygen species (ROS) level. KYSE450 and TOM20 knockout KYSE450-/- xenograft models were established to elucidate the mechanisms involved in NBT-induced cell death. RESULTS: In this study, NBT effectively upregulated the expression of TOM20 and facilitated the translocation of BAX to mitochondria, which promoted the release of cytochrome c from mitochondria to the cytoplasm, leading to the activation of caspase-9 and caspase-3, and finally induced pyroptosis. Knocking out TOM20 by CRISPR-Cas9 significantly inhibited the expression of BAX and the downstream BAX/caspase-3/GSDME pathway, which attenuated NBT-induced pyroptosis. The elevated mitochondrial ROS level was observed after NBT treatment. Remarkably, the inhibition of ROS by N-acetylcysteine (NAC) effectively suppressed the activation of TOM20/BAX pathway. Moreover, in vivo experiments demonstrated that NBT exhibited potent antitumor effects in both KYSE450 and TOM20 knockout KYSE450-/- xenograft models. Notably, the attenuated antitumor effects and reduced cleavage of GSDME were observed in the TOM20 knockout model. CONCLUSION: These findings reveal that NBT induces pyroptosis through ROS/TOM20/BAX/GSDME pathway, which highlight the therapeutic potential of targeting TOM20 and GSDME, providing promising prospects for the development of innovative and effective treatment approaches for esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Gasderminas , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Piroptosis , Especies Reactivas de Oxígeno , Transducción de Señal , Proteína X Asociada a bcl-2 , Animales , Humanos , Masculino , Ratones , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
Phytomedicine ; 126: 155073, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417244

RESUMEN

BACKGROUND: Cervical spondylotic myelopathy (CSM) is a degenerative pathology that affects both upper and lower extremity mobility and sensory function, causing significant pressure on patients and society. Prior research has suggested that ginsenosides may have neuroprotective properties in central nervous system diseases. However, the efficacy and mechanism of ginsenosides for CSM have yet to be investigated. PURPOSE: This study aims to analyze the composition of ginsenosides using UPLC-MS, identify the underlying mechanism of ginsenosides in treating CSM using network pharmacology, and subsequently confirm the efficacy and mechanism of ginsenosides in rats with chronic spinal cord compression. METHODS: UPLC-Q-TOF-MS was utilized to obtain mass spectrum data of ginsenoside samples. The chemical constituents of the samples were analyzed by consulting literature reports and relevant databases. Ginsenoside and CSM targets were obtained from the TCMSP, OMIM, and GeneCards databases. GO and KEGG analyses were conducted, and a visualization network of ginsenosides-compounds-key targets-pathways-CSM was constructed, along with molecular docking of key bioactive compounds and targets, to identify the signaling pathways and proteins associated with the therapeutic effects of ginsenosides on CSM. Chronic spinal cord compression rats were intraperitoneally injected with ginsenosides (50 mg/kg and 150 mg/kg) and methylprednisolone for 28 days, and motor function was assessed to investigate the therapeutic efficacy of ginsenosides for CSM. The expression of proteins associated with TNF, IL-17, TLR4/MyD88/NF-κB, and NLRP3 signaling pathways was assessed by immunofluorescence staining and western blotting. RESULTS: Using UPLC-Q-TOF-MS, 37 compounds were identified from ginsenoside samples. Furthermore, ginsenosides-compounds-key targets-pathways-CSM visualization network indicated that ginsenosides may modulate the PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway and Apoptosis by targeting AKT1, TNF, MAPK1, CASP3, IL6, and IL1B, exerting a therapeutic effect on CSM. By attenuating neuroinflammation through the TNF, IL-17, TLR4/MyD88/NF-κB, and MAPK signaling pathways, ginsenosides restored the motor function of rats with CSM, and ginsenosides 150 mg/kg showed better effect. This was achieved by reducing the phosphorylation of NF-κB and the activation of the NLRP3 inflammasome. CONCLUSIONS: The results of network pharmacology indicate that ginsenosides can inhibit neuroinflammation resulting from spinal cord compression through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that ginsenosides can reduce neuroinflammation by inhibiting NLRP3 inflammasomes via multiple signaling pathways, additionally, it should be noted that 150 mg/kg was a relatively superior dose. This study is the first to verify the intrinsic molecular mechanism of ginsenosides in treating CSM by combining pharmacokinetics, network pharmacology, and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.


Asunto(s)
Experimentación Animal , Medicamentos Herbarios Chinos , Ginsenósidos , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Humanos , Animales , Ratas , Ginsenósidos/farmacología , Interleucina-17 , Proteína con Dominio Pirina 3 de la Familia NLR , FN-kappa B , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Factor 88 de Diferenciación Mieloide , Farmacología en Red , Enfermedades Neuroinflamatorias , Fosfatidilinositol 3-Quinasas , Receptor Toll-Like 4 , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología
5.
Mar Environ Res ; 195: 106378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266549

RESUMEN

The increasing prevalence of phosphorus limitation in coastal waters has drawn attention to the bioavailability of cellular surface-adsorbed phosphorus (SP) as a reservoir of phosphorus in phytoplankton. This study examined the storage, utilization, and regulation of SP in the coastal waters of the East China Sea, as well as three cultivated algal bloom species (Skeletonema marinoi, Prorocentrum shikokuense, and Karenia mikimotoi) prevalent in the area. SP accounted for 14.3%-45.5% of particulate phosphorus in the field and laboratory species. After the depletion of external phosphate, the studied species can rapidly transport SP within 3-24 h. The storage of SP is regulated by both external phosphate conditions and the internal growth stage of cells, but it is not influenced by the various cellular surface structures of the studied species. This study highlights the significance of SP as a crucial phosphorus reservoir and the potential use of the SP level as an indicator of phosphorus deficiency in phytoplankton.


Asunto(s)
Dinoflagelados , Microalgas , Fosfatos , Fitoplancton/fisiología , Fósforo , China , Floraciones de Algas Nocivas
6.
Chemosphere ; 349: 140844, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042419

RESUMEN

Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.


Asunto(s)
Dinoflagelados , Fósforo , Fósforo/metabolismo , Lípidos de la Membrana/metabolismo , Dinoflagelados/metabolismo , Floraciones de Algas Nocivas , Fosfolípidos/metabolismo , Autofagia
7.
Front Aging Neurosci ; 15: 1252610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881362

RESUMEN

Introduction: Motor-cognitive interactive interventions, such as action observation training (AOT), have shown great potential in restoring cognitive function and motor behaviors. It is expected that an advanced AOT incorporating specific Tai Chi movements with continuous and spiral characteristics can facilitate the shift from automatic to intentional actions and thus enhance motor control ability for early-stage PD. Nonetheless, the underlying neural mechanisms remain unclear. The study aimed to investigate changes in brain functional connectivity (FC) and clinical improvement after 12 weeks of Tai Chi-based action observation training (TC-AOT) compared to traditional physical therapy (TPT). Methods: Thirty early-stage PD patients were recruited and randomly assigned to the TC-AOT group (N = 15) or TPT group (N = 15). All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans before and after 12 weeks of training and clinical assessments. The FCs were evaluated by seed-based correlation analysis based on the default mode network (DMN). The rehabilitation effects of the two training methods were compared while the correlations between significant FC changes and clinical improvement were investigated. Results: The results showed that the TC-AOT group exhibited significantly increased FCs between the dorsal medial prefrontal cortex and cerebellum crus I, between the posterior inferior parietal lobe and supramarginal gyrus, and between the temporal parietal junction and clusters of middle occipital gyrus and superior temporal. Moreover, these FC changes had a positive relationship with patients' improved motor and cognitive performance. Discussion: The finding supported that the TC-AOT promotes early-stage PD rehabilitation outcomes by promoting brain neuroplasticity where the FCs involved in the integration of sensorimotor processing and motor learning were strengthened.

8.
Nutr Neurosci ; : 1-13, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37691351

RESUMEN

CONTEXT: Spinal cord injury (SCI) is a potentially fatal neurological disease with severe complications and a high disability rate. An increasing number of animal experimental studies support the therapeutic effect of quercetin, which is a natural anti-inflammatory and antioxidant bioflavonoid. OBJECTIVE: This paper reviewed the therapeutic effect of quercetin on a rat SCI model and summarized the relevant mechanistic research. DATA SOURCES: PubMed, EMBASE, Web of Science, Science Direct, WanFang Data, SinoMed databases, the China National Knowledge Infrastructure, and the Vip Journal Integration Platform were searched from their inception to April 2023 for animal experiments applying quercetin to treat SCI. STUDY SELECTION: Based on the PICOS criteria, a total of 18 eligible studies were included, of which 14 were high quality. RESULTS: In this study, there was a gradual increase in effect based on the Basso, Beattie, and Bresnahan (BBB) score after three days (p < 0.0001). Furthermore, gender differences also appeared in the efficacy of quercetin; males performed better than females (p = 0.008). Quercetin was also associated with improved inclined plane test score (p = 0.008). In terms of biochemical indicators, meta-analysis showed that MDA (p < 0.0001) and MPO (p = 0.0002) were significantly reduced after quercetin administration compared with the control group, and SOD levels were increased (p = 0.004). Mechanistically, quercetin facilitates the inhibition of oxidative stress, inflammation, autophagy and apoptosis that occur after SCI. CONCLUSIONS: Generally, this systematic review suggests that quercetin has a neuroprotective effect on SCI.

9.
Bioresour Technol ; 384: 129352, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37336459

RESUMEN

Microalgae cultivation for biodiesel production is promising, but the high demand for nutrients, such as nitrogen and phosphorus, remains a limiting factor. This study investigated effects of struvite, a low-cost nutrient source, on microalgae production under different physiological phases. Changes in element concentrations were determined to characterize the controllable nutrient release properties of struvite. Results showed that nutrient elements could be effectively supplemented by struvite. However, responses of microalgae under different growth stages to struvite varied obviously, achieving the highest biomass (0.53 g/L) and the lowest (0.32 g/L). Moreover, the microalgal lipid production was obviously increased by adding struvite during the growth phase, providing the first evidence that struvite could serve as an alternative buffering nutrient source to culture microalgae. The integration of microalgae cultivation with struvite as a buffering nutrient source provides a novel strategy for high ammonia nitrogen wastewater treatment with microalgae for biodiesel production.


Asunto(s)
Microalgas , Aguas Residuales , Estruvita , Biomasa , Biocombustibles , Fósforo , Nutrientes , Lípidos , Nitrógeno/análisis
10.
Plants (Basel) ; 12(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36771715

RESUMEN

Paris polyphylla var. yunnanensis, a medicinal plant that originated in Yunnan (China), has been over-harvested in the wild population, resulting in its artificial cultivation. Given the negative environmental impacts of the excessive use of phosphorus (P) fertilization, the application of organophosphate-degrading bacteria (OPDB) is a sustainable approach for improving the P use efficiency in Paris polyphylla var. yunnanensis production. The present work aimed to analyze the effects of three organic phosphate-solubilizing bacteria of Bacillus on the yield and quality of P. polyphylla var. yunnanensis and the P concentrations in the soil. All the inoculation treatments distinctly increased the rhizome biomass, steroidal, and total saponin concentrations of the rhizomes and the Olsen-P and organic P in the soil. The highest growth rate of rhizomes biomass, steroidal saponins, available phosphorus, and total phosphorus content was seen in the S7 group, which was inoculated with all three OPDB strains, showing increases of 134.58%, 132.56%, 51.64%, and 17.19%, respectively. The highest total saponin content was found in the group inoculated with B. mycoides and B. wiedmannii, which increased by 33.68%. Moreover, the highest organic P content was seen in the group inoculated with B. wiedmannii and B. proteolyticus, which increased by 96.20%. In addition, the rhizome biomass was significantly positively correlated with the saponin concentration, together with the positive correlation between the Olsen-P and organic P and total P. It is concluded that inoculation with organophosphate-degrading bacteria improved the biomass and medicinal ingredients of the rhizome in P. polyphylla var. yunnanensis, coupled with increased soil P fertility, with a mixture of the three bacteria performing best.

11.
World J Gastroenterol ; 29(4): 670-681, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36742173

RESUMEN

Colon cancer has attracted much attention due to its annually increasing incidence. Conventional chemotherapeutic drugs are unsatisfactory in clinical application because of their lack of targeting and severe toxic side effects. In the past decade, nanomedicines with multimodal therapeutic strategies have shown potential for colon cancer because of their enhanced permeability and retention, high accumulation at tumor sites, co-loading with different drugs, and comb-ination of various therapies. This review summarizes the advances in research on various nanomedicine-based therapeutic strategies including chemotherapy, radiotherapy, phototherapy (photothermal therapy and photodynamic therapy), chemodynamic therapy, gas therapy, and immunotherapy. Additionally, the therapeutic mechanisms, limitations, improvements, and future of the above therapies are discussed.


Asunto(s)
Neoplasias del Colon , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/terapia , Nanomedicina , Fototerapia , Sistemas de Liberación de Medicamentos , Neoplasias del Colon/tratamiento farmacológico
12.
Chin J Nat Med ; 21(1): 65-80, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36641234

RESUMEN

Acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had caused a global pandemic since 2019, and posed a serious threat to global health security. Traditional Chinese medicine (TCM) has played an indispensable role in the battle against the epidemic. Many components originated from TCMs were found to inhibit the production of SARS-CoV-2 3C-like protease (3CLpro) and papain-like protease (PLpro), which are two promising therapeutic targets to inhibit SARS-CoV-2. This study describes a systematic investigation of the roots and rhizomes of Sophora tonkinensis, which results in the characterization of 12 new flavonoids, including seven prenylated flavanones (1-7), one prenylated flavonol (8), two prenylated chalcones (9-10), one isoflavanone (11), and one isoflavan dimer (12), together with 43 known compounds (13-55). Their structures including the absolute configurations were elucidated by comprehensive analysis of MS, 1D and 2D NMR data, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculations. Compounds 12 and 51 exhibited inhibitory effects against SARS-CoV-2 3CLpro with IC50 values of 34.89 and 19.88 µmol·L-1, repectively while compounds 9, 43 and 47 exhibited inhibitory effects against PLpro with IC50 values of 32.67, 79.38, and 16.74 µmol·L-1, respectively.


Asunto(s)
COVID-19 , Flavonoides , Flavonoides/farmacología , Flavonoides/química , SARS-CoV-2 , Rizoma , Péptido Hidrolasas , Antivirales/farmacología , Antivirales/química
13.
Gynecol Obstet Invest ; 88(1): 37-46, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36577396

RESUMEN

OBJECTIVE: The aim of this study was to highlight the safety of OnabotulinumtoxinA (BTA) injections, with or without concurrent pudendal nerve block, in treating women with myofascial pelvic pain (MFPP). DESIGN: This was a retrospective cohort study. SETTING: The review was conducted in a tertiary care academic center. Participants/Materials: We conducted a chart review of patients who were diagnosed with MFPP and treated with BTA with or without pudendal nerve block between January 2010 and February 2022. METHODS: BTA was injected transvaginally into the pelvic floor muscle group. The primary outcomes were adverse events after BTA injections, and the secondary outcome was the effect of concomitant pudendal nerve block at the time of BTA injections. RESULTS: The cohort included 182 patients; 103 (56.6%) received BTA injections with pudendal nerve block, and 79 (43.4%) received BTA alone. There were no significant demographic differences between the two groups. Post-treatment complications of BTA administration included worsening of pelvic pain (11.5%), constipation (6.6%), urinary tract infection (2.7%), urinary retention (3.8%), and fecal incontinence (2.7%). No statistical difference was noted in the number of phone calls, patient-initiated electronic messages, emergency room visits, or clinic visits for both groups within 30 days post-treatment. The mean number of total injections was 1.6 in the BTA-only group and 1.7 in the BTA with pudendal block group (p = 0.421). Median time to re-intervention with a second BTA injection was 6.0 months; 5.6 months in the BTA with pudendal block group; and 6.8 months in the BTA-only group, p = 0.46. There were 63 re-intervention events after BTA injections. LIMITATIONS: Limitations of our study include the retrospective design making it vulnerable to missing or incomplete data available for review. CONCLUSION: OnabotulinumtoxinA is beneficial in treating women with MFPP; with a duration of therapeutic effect of approximately 6 months. The use of a concurrent pudendal nerve block did not impact clinical outcomes.


Asunto(s)
Toxinas Botulínicas Tipo A , Síndromes del Dolor Miofascial , Nervio Pudendo , Femenino , Humanos , Toxinas Botulínicas Tipo A/administración & dosificación , Toxinas Botulínicas Tipo A/efectos adversos , Toxinas Botulínicas Tipo A/uso terapéutico , Dolor Pélvico/tratamiento farmacológico , Dolor Pélvico/etiología , Estudios Retrospectivos , Atención Terciaria de Salud , Síndromes del Dolor Miofascial/tratamiento farmacológico , Bloqueo Nervioso , Inyecciones Intramusculares , Resultado del Tratamiento
14.
Int J Cancer ; 152(6): 1115-1123, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36196488

RESUMEN

Prospective epidemiological studies have provided limited evidence for an association between tea consumption and liver cancer risk. Based on a population-based prospective cohort study in middle-aged Chinese women, we investigated the association between tea consumption and the risk of primary liver cancer. Detailed information on tea drinking habits and other potential confounders was obtained at the baseline interview. Incident liver cancer cases were identified through record linkage with the population-based cancer registry and verified through home visits and review of medical charts by medical experts. Multiple aspects of tea drinking habits including starting age, duration, intensity and cumulative consumption of any type of tea and green tea were considered. Multivariable-adjusted hazard ratios (aHRs) and their 95% confidence intervals (CIs) were derived from the Cox regression models. After a median follow-up time of 18.12 (interquartile range = 1.59) years, 253 incident liver cancer cases were identified from 71 841 cohort members. Compared with never tea drinkers, the risk of liver cancer for participants who have consumed over 30 kg of dried tea leaves cumulatively was 0.56 (95% CI: 0.32-0.97). For those who drank green tea only, the aHR was 0.54 (95% CI: 0.30-0.98). This updated study suggested an inverse association between cumulative consumption of tea, especially green tea and the risk of primary liver cancer.


Asunto(s)
Neoplasias Hepáticas , Persona de Mediana Edad , Humanos , Femenino , Estudios Prospectivos , Factores de Riesgo , China/epidemiología , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/etiología , , Salud de la Mujer
15.
Molecules ; 29(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38202694

RESUMEN

The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1ß, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.


Asunto(s)
Ginsenósidos , Panax , Animales , Ratones , Ginsenósidos/farmacología , Fosfatidilinositol 3-Quinasas , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología
16.
Dose Response ; 20(4): 15593258221141579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458280

RESUMEN

Hyperbaric Oxygen Therapy (HBOT) has definitive therapeutic effects on spinal cord injury (SCI), but its mechanism of action is still unclear. Here, we've conducted a systemic proteomic analysis to identify differentially expressed proteins (DEPs) between SCI rats and HBOT + SCI rats. The function clustering analysis showed that the top enriched pathways of DEPs include oxygen transport activity, oxygen binding, and regulation of T cell proliferation. The results of functional and signal pathway analyses indicated that metabolic pathways, thermogenesis, LXR/RXR activation, acute phase response signaling, and the intrinsic prothrombin pathway in the SCI + HBOT group was higher than SCI group.

17.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362430

RESUMEN

RNA editing is a post-transcriptional modification process that alters the RNA sequence relative to the genomic blueprint. In plant organelles (namely, mitochondria and chloroplasts), the most common type is C-to-U, and the absence of C-to-U RNA editing results in abnormal plant development, such as etiolation and albino leaves, aborted embryonic development and retarded seedling growth. Here, through PREP, RES-Scanner, PCR and RT-PCR analyses, 38 and 139 RNA editing sites were identified from the chloroplast and mitochondrial genomes of Camellia sinensis, respectively. Analysis of the base preference around the RNA editing sites showed that in the -1 position of the edited C had more frequent occurrences of T whereas rare occurrences of G. Three conserved motifs were identified at 25 bases upstream of the RNA editing site. Structural analyses indicated that the RNA secondary structure of 32 genes, protein secondary structure of 37 genes and the three-dimensional structure of 5 proteins were altered due to RNA editing. The editing level analysis of matK and ndhD in six tea cultivars indicated that matK-701 might be involved in the color change of tea leaves. Furthermore, 218 PLS-CsPPR proteins were predicted to interact with the identified RNA editing sites. In conclusion, this study provides comprehensive insight into RNA editing events, which will facilitate further study of the RNA editing phenomenon of the tea plant.


Asunto(s)
Camellia sinensis , Edición de ARN , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , ARN/metabolismo , Té/metabolismo , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Nutrients ; 14(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297116

RESUMEN

The prevalence and role of malnutrition in periprosthetic joint infection (PJI) remain unclear. This study aimed to use measurable nutritional screening tools to assess the prevalence of malnutrition in PJI patients during two-stage exchange arthroplasty and to explore the association between malnutrition and treatment failure. Our study retrospectively included 183 PJI cases who underwent 1st stage exchange arthroplasty and had available nutritional parameters, of which 167 proceeded with 2nd stage reimplantation. The recently proposed Musculoskeletal Infection Society (MSIS) Outcome Reporting Tool was used to determine clinical outcomes. The Controlling Nutritional Status (CONUT), Nutritional Risk Index (NRI), and Naples Prognostic Score (NPS) were used to identify malnutrition at 1st and 2nd stage exchange, respectively. Multivariate logistic regression analyses were performed to determine the association between malnutrition and treatment failure. Restricted cubic spline models were further used to explore the dose−response association. Additionally, risk factors for moderate-to-severe malnutrition were evaluated. Malnourished patients identified by CONUT, NPS, and NRI accounted for 48.1% (88/183), 98.9% (181/183), and 55.7% (102/183) of patients at 1st stage, and 9.0% (15/167), 41.9% (70/167), and 43.1% (72/167) at 2nd stage, indicating a significant improvement in nutritional status. We found that poorer nutritional status was a predictor of treatment failure, with CONUT performing best as a predictive tool. Moderate-to-severe malnutrition at 1st stage identified by CONUT was significantly related to treatment failure directly caused by PJI (odds ratio [OR] = 5.86), while the OR was raised to 12.15 at 2nd stage (OR = 12.15). The linear dose−response associations between them were also confirmed (P for nonlinearity at both 1st and 2nd stage > 0.05). As for total treatment failure, moderate-to-severe malnutrition as determined by CONUT was associated with a 1.96-fold and 8.99-fold elevated risk at the 1st and 2nd stages, respectively. Age ≥ 68 years (OR = 5.35) and an increased number of previous surgeries (OR = 2.04) may be risk factors for moderate-to-severe malnutrition. Overall, the prevalence of malnutrition in PJI patients is very high. Given the strong association between moderate-to-severe malnutrition identified by CONUT and PJI treatment failure, COUNT could be a promising tool to evaluate the nutritional status of PJI patients to optimize treatment outcomes.


Asunto(s)
Desnutrición , Infecciones Relacionadas con Prótesis , Humanos , Anciano , Estado Nutricional , Evaluación Nutricional , Estudios Retrospectivos , Infecciones Relacionadas con Prótesis/epidemiología , Infecciones Relacionadas con Prótesis/complicaciones , Desnutrición/diagnóstico , Desnutrición/epidemiología , Desnutrición/complicaciones , Insuficiencia del Tratamiento , Pronóstico
19.
Oxid Med Cell Longev ; 2022: 1198607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993026

RESUMEN

Endothelial cell senescence is the main risk factor contributing to vascular dysfunction and the progression of aging-related cardiovascular diseases. However, the relationship between endothelial cell metabolism and endothelial senescence remains unclear. The present study provides novel insight into fatty acid metabolism in the regulation of endothelial senescence. In the replicative senescence model and H2O2-induced premature senescence model of primary cultured human umbilical vein endothelial cells (HUVECs), fatty acid oxidation (FAO) was suppressed and fatty acid profile was disturbed, accompanied by downregulation of proteins associated with fatty acid uptake and mitochondrial entry, in particular the FAO rate-limiting enzyme carnitine palmitoyl transferase 1A (CPT1A). Impairment of fatty acid metabolism by silencing CPT1A or CPT1A inhibitor etomoxir facilitated the development of endothelial senescence, as implied by the increase of p53, p21, and senescence-associated ß-galactosidase, as well as the decrease of EdU-positive proliferating cells. In the contrary, rescue of FAO by overexpression of CPT1A or supplement of short chain fatty acids (SCFAs) acetate and propionate ameliorated endothelial senescence. In vivo, treatment of acetate for 4 weeks lowered the blood pressure and alleviated the senescence-related phenotypes in aortas of Ang II-infused mice. Mechanistically, fatty acid metabolism regulates endothelial senescence via acetyl-coenzyme A (acetyl-CoA), as implied by the observations that suppression of acetyl-CoA production using the inhibitor of ATP citrate lyase NDI-091143 accelerated senescence of HUVECs and that supplementation of acetyl-CoA prevented H2O2-induced endothelial senescence. Deficiency of acetyl-CoA resulted in alteration of acetylated protein profiles which are associated with cell metabolism and cell cycle. These findings thus suggest that improvement of fatty acid metabolism might ameliorate endothelial senescence-associated cardiovascular diseases.


Asunto(s)
Acetilcoenzima A , Enfermedades Cardiovasculares , Ácidos Grasos , Acetilcoenzima A/metabolismo , Acetilación , Animales , Enfermedades Cardiovasculares/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Senescencia Celular , Ácidos Grasos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Oxidación-Reducción
20.
J Ethnopharmacol ; 295: 115396, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35598796

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt., also known as motherwort, is a traditional Chinese medicine that was first identified in Shennong Bencao Jing, the first and essential pharmacy monograph in China. L. japonicus has been regarded as a good gynecological medicine since ancient times. It has been widely used in clinical settings for treatment of gynecological diseases and postnatal rehabilitation with good efficacy and low adverse effects. AIM OF THE STUDY: The main purpose of this study was to determine the angiogenic and wound healing effects of total alkaloid fraction from L. japonicus Houtt. (TALH) in vivo and in vitro. In addition, the main bioactive components of total alkaloids were to be identified and analyzed in this study. MATERIALS AND METHODS: First, the UHPLC/Q-TOF-MS method was used to identify and quantify the major components in the TALH extract. The wound healing activity was evaluated in vivo using a rat full-thickness cutaneous wound model. Histological study of wound healing in rat model was performed via immunohistochemistry and immunofluorescence. Cell proliferation was determined by MTT assay. Wound healing and transwell assays were used for detection of cell migration. The effect on tube formation was determined by tube formation assay in HUVECs. Western blot and RT-PCR were used to detect the expressions of relative proteins and genes respectively. Knock-down of SRC by siRNA was done to verify the crucial role of SRC in promotion of angiogenesis induced by TALH. RESULTS: Seven characteristic peaks were recognized in the UHPLC/Q-TOF-MS spectrum, while four of the main components were quantified. The wound model in rats showed that treatment of TALH promoted wound healing by stimulating cellular proliferation and collagen deposition. In vitro experiments showed that co-treatment of TALH and VEGF increased cell proliferation, migration and tube formation in HUVECs. Mechanistic studies suggested that the co-treatment increased gene expressions of SRC, MEK1/2 and ERK1/2, as well as the phosphorylation levels of these proteins. Furthermore, the effect of co-treatment was attenuated after SRC knockdown, suggesting that SRC plays an important role in angiogenesis and wound healing induced by TALH and VEGF co-treatment. CONCLUSION: Our results showed that TALH was one of the main active components of L. japonicus that promoted angiogenesis and wound healing by regulating the SRC/MEK/ERK pathway. Our study provided scientific basis for better clinical application of L. japonicas.


Asunto(s)
Alcaloides , Leonurus , Alcaloides/farmacología , Animales , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Ratas , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA