Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 710: 149895, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38593620

RESUMEN

Neurotoxicity is a common side effect of certain types of therapeutic drugs, posing a major hurdle for their clinical application. Accumulating evidence suggests that ferroptosis is involved in the neurotoxicity induced by these drugs. Therefore, targeting ferroptosis is considered to be a reasonable approach to prevent such side effect. Arctigenin (ATG) is a major bioactive ingredient of Arctium lappa L., a popular medicinal plant in Asia, and has been reported to have multiple bioactivities including neuroprotection. However, the mechanisms underlying the neuroprotection of ATG has not been well elucidated. The purpose of this study was to investigate whether the neuroprotection of ATG was associated with its ability to protect neuronal cells from ferroptosis. Using neuronal cell ferroptosis model induced by either classic ferroptosis induces or therapeutic drugs, we demonstrated for the first time that ATG in the nanomolar concentration range effectively prevented neuronal cell ferroptosis induced by classic ferroptosis inducer sulfasalazine (SAS) and erastin (Era), or therapeutic drug oxaliplatin (OXA) and 5-fluorouracil (5-FU). Mechanistically, we uncovered that the anti-ferroptotic effect of ATG was attributed to its ability to activate SLC7A11-cystine-cysteine axis. The findings of the present study implicate that ATG holds great potential to be developed as a novel agent for preventing SLC7A11 inhibition-mediated neurotoxicity.


Asunto(s)
Antineoplásicos , Ferroptosis , Furanos , Lignanos , Síndromes de Neurotoxicidad , Humanos , Cisteína , Cistina , Fluorouracilo , Antineoplásicos/farmacología , Sistema de Transporte de Aminoácidos y+
2.
Am J Chin Med ; 52(1): 137-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38328830

RESUMEN

Traditional Chinese Medicine (TCM) has achieved high clinical efficacy in treating malignancies in recent years and is thus gradually becoming an important therapy for patients with advanced tumor for its benefits in reducing side effects and improving patients' immune status. However, it has not been internationally recognized for cancer treatment because TCM's anti-tumor mechanism is not fully elucidated, limiting its clinical application and international promotion. This review traced the mechanism of the TCM-mediated tumor cell death pathway and its effect on remodeling the tumor immune microenvironment, its direct impact on the microenvironment, its anti-tumor effect in combination with immunotherapy, and the current status of clinical application of TCM on tumor treatment. TCM can induce tumor cell death in many regulatory cell death (RCD) pathways, including apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis. In addition, TCM-induced cell death could increase the immune cells' infiltration with an anti-tumor effect in the tumor tissue and elevate the proportion of these cells in the spleen or peripheral blood, enhancing the anti-tumor capacity of the tumor-bearing host. Moreover, TCM can directly affect immune function by increasing the population or activating the sub-type immune cells with an anti-tumor role. It was concluded that TCM could induce a pan-tumor death modality, remodeling the local TIME differently. It can also improve the systemic immune status of tumor-bearing hosts. This review aims to establish a theoretical basis for the clinical application of TCM in tumor treatment and to provide a reference for TCM's potential in combination with immunotherapy in cancer treatment.


Asunto(s)
Medicina Tradicional China , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Apoptosis , Resultado del Tratamiento , Microambiente Tumoral
3.
Phytomedicine ; 109: 154559, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610151

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) are important constituent parts of tumor microenvironment that connected with tumor metastasis in melanoma. Connexin 43 (Cx43) was expressed in all the immune cells which modulated different aspects of immune response. However, the concrete molecular mechanism maintains unclear. PURPOSE: The study aimed to find a natural drug monomer effectively reversed the polarity of tumor-associated macrophages inhibiting melanoma metastasis and improving survival time. METHODS: Flow cytometry was used to determine the effects of dioscin on the macrophage phenotype. Western bolt and ELISA were performed to explore the underlying mechanism of dioscin and a co-culture experiment in vitro was applied to assess the role of dioscin on TAMs-mediated melanoma proliferation, invasion and migration. Moreover, in vivo melanoma metastasis models were established for examining effects of dioscin on TAMs-mediated melanoma metastasis. RESULTS: Dioscin repolarized macrophages from M2 towards M1-like phenotype. Dioscin suppressed M2-like phenotype macrophages through enhanced the expression and transport function of Cx43. Furthermore, the stimulation IFN-γ/STAT1 pathway and suppression IL-4/JAK2/STAT3 pathway were major mechanism of dioscin. Importantly, dioscin suppressed Cx43G21R mutation TAMs induced proliferation, invasion, migration and metastasis of melanoma cells. It worthily noting that dioscin ameliorated tumor-associated-macrophages-mediated melanoma metastasis in vitro and vivo. CONCLUSION: Dioscin re-polarized macrophages from M2 to M1 phenotype through activation of Cx43-gap-junction-intercellular-communications (Cx43-GJs)/IFN-γ/STAT1 pathway and inhibition of Cx43-GJs/IL-4/JAK2/STAT3 suppressing migration, invasion and metastasis of melanoma, which provided a theoretical and experimental basis for treating melanoma metastasis.


Asunto(s)
Conexina 43 , Melanoma , Humanos , Conexina 43/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Interleucina-4/metabolismo , Macrófagos , Melanoma/patología , Línea Celular Tumoral , Microambiente Tumoral
4.
Biomed Pharmacother ; 129: 110471, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32768958

RESUMEN

Huoxuezhitong capsule (HXZT, activating blood circulation and relieving pain capsule), has been applied for osteoarthritis since 1974. It consists of Angelica sinensis (Oliv.) Diels, Panax notoginseng (Burkill) F. H. Chen ex C. H., Boswellia sacra, Borneol, Eupolyphaga sinensis Walker, Pyritum. However, the direct effects of HXZT on osteoarthritis and the underlying mechanisms were poorly understood. In this study, we aimed to explore the analgesia effect of HXZT on MIA-induced osteoarthritis rat and the underlying mechanisms. The analgesia and anti-inflammatory effect of HXZT on osteoarthritis in vivo were tested by the arthritis model rats induced by monosodium iodoacetate (MIA).. Mechanistic studies confirmed that HXZT could inhibit the activation of NF-κB and down-regulate the mRNA expression of related inflammatory factors in LPS-induced RAW264.7 and ATDC5 cells. Furtherly, in LPS-induced RAW264.7 cells, HXZT could suppress NF-κB via inhibiting PI3K/Akt pathway. Taken together, HXZT capsule could ameliorate MIA-induced osteoarthritis of rats through suppressing PI3K/ Akt/ NF-κB pathway.


Asunto(s)
Antirreumáticos/farmacología , Artritis Experimental/prevención & control , Medicamentos Herbarios Chinos/farmacología , Articulación de la Rodilla/efectos de los fármacos , FN-kappa B/metabolismo , Osteoartritis de la Rodilla/prevención & control , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/enzimología , Artritis Experimental/patología , Cápsulas , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Ácido Yodoacético , Articulación de la Rodilla/enzimología , Articulación de la Rodilla/patología , Masculino , Ratones , Osteoartritis de la Rodilla/inducido químicamente , Osteoartritis de la Rodilla/enzimología , Osteoartritis de la Rodilla/patología , Fosforilación , Células RAW 264.7 , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA