Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 30(9): 3067-3078.e5, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130907

RESUMEN

Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.


Asunto(s)
Hiperglucemia/fisiopatología , Hipotálamo/metabolismo , Comidas , Neuroglía/patología , Plasticidad Neuronal , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Glucemia/metabolismo , Fenómenos Electrofisiológicos , Conducta Alimentaria , Hiperglucemia/sangre , Ratones Endogámicos C57BL , Ratones Transgénicos , Periodo Posprandial , Sinapsis/metabolismo
2.
Mol Metab ; 20: 166-177, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30553770

RESUMEN

OBJECTIVE: Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH). METHODS: Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (H2O2) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals. RESULTS: Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS. CONCLUSIONS: A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.


Asunto(s)
Glucemia/metabolismo , Dinaminas/metabolismo , Hipotálamo/metabolismo , Mitocondrias/metabolismo , Células Receptoras Sensoriales/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Arterias Carótidas/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
Diabetes ; 66(2): 314-324, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27899482

RESUMEN

The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.


Asunto(s)
Peso Corporal/genética , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Canales Catiónicos TRPC/genética , Animales , Western Blotting , Ayuno , Prueba de Tolerancia a la Glucosa , Homeostasis , Hipotálamo/citología , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales Catiónicos TRPC/metabolismo
4.
Cell Metab ; 23(2): 324-34, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26621107

RESUMEN

The composition of gut microbiota has been associated with host metabolic phenotypes, but it is not known if gut bacteria may influence host appetite. Here we show that regular nutrient provision stabilizes exponential growth of E. coli, with the stationary phase occurring 20 min after nutrient supply accompanied by bacterial proteome changes, suggesting involvement of bacterial proteins in host satiety. Indeed, intestinal infusions of E. coli stationary phase proteins increased plasma PYY and their intraperitoneal injections suppressed acutely food intake and activated c-Fos in hypothalamic POMC neurons, while their repeated administrations reduced meal size. ClpB, a bacterial protein mimetic of α-MSH, was upregulated in the E. coli stationary phase, was detected in plasma proportional to ClpB DNA in feces, and stimulated firing rate of hypothalamic POMC neurons. Thus, these data show that bacterial proteins produced after nutrient-induced E. coli growth may signal meal termination. Furthermore, continuous exposure to E. coli proteins may influence long-term meal pattern.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Tracto Gastrointestinal/microbiología , Respuesta de Saciedad , Adenosina Trifosfato/biosíntesis , Amígdala del Cerebelo/metabolismo , Animales , Fenómenos Electrofisiológicos , Endopeptidasa Clp , Escherichia coli/metabolismo , Conducta Alimentaria , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Proteínas de Choque Térmico/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Péptido YY/metabolismo , Proopiomelanocortina/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
5.
Behav Brain Res ; 184(1): 1-10, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17686536

RESUMEN

The long-chain polyunsaturated n-3 fatty acids (n-3 PUFA), particularly docosahexaenoic acid (DHA), are abundantly present in the central nervous system and play an important role in cognitive functions such as learning and memory. We, therefore, investigated the effects of n-3 PUFA-depletion in rats (F2 generation) on the learning of an olfactory discrimination task, progressively acquired within a four-arm maze, and on the mRNA expression of some candidate genes, i.e., c-fos, Gir and glucose transporter (Glut1), which could reflect the level of cerebral activity. We observed that DHA contents were dramatically decreased in the olfactory bulb, the piriform cortex and the neocortex of n-3-depleted rats. Furthermore, the n-3 deficiency resulted in a mild olfactory learning impairment as these rats required more days to master the olfactory task compared to control rats. Real-time RT-PCR experiments revealed that the training induced the expression of c-fos mRNA in all the three regions of the brain whereas Gir and Glut1 mRNA were induced only in olfactory bulb and neocortex. However, such an increase was less marked in the n-3-deficient rats. Taken together, these results allow us to assume that the behavioural impairment in n-3-deficient rats is linked to the depletion of n-3 fatty acids in brain regions processing olfactory cues. Data are discussed in view of the possible role of some of these genes in learning-induced neuronal olfactory plasticity.


Asunto(s)
Encéfalo/metabolismo , Discriminación en Psicología/fisiología , Ácidos Grasos Omega-3/metabolismo , Transportador de Glucosa de Tipo 1/genética , Proteínas Proto-Oncogénicas c-fos/genética , Receptores Acoplados a Proteínas G/genética , Olfato/fisiología , Análisis de Varianza , Animales , Conducta Animal/fisiología , Peso Corporal/fisiología , Dieta con Restricción de Grasas/métodos , Aprendizaje Discriminativo/fisiología , Regulación de la Expresión Génica/fisiología , Transportador de Glucosa de Tipo 1/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA