Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phytomedicine ; 120: 155061, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689035

RESUMEN

BACKGROUND: The extension of average life expectancy and the aggravation of population aging have become the inevitable trend of human development. In an aging society, various problems related to medical care for the elderly have become increasingly prominent. However, most of the age-related diseases have the characteristics of multiple diseases at the same time, prone to complications, and atypical clinical manifestations, which bring great difficulties to its treatment. Galangin (3,5,7-trihydroxyflavone) is a natural active compound extracted from the root of Alpinia officinarum Hance (Zingiberaceae). Recently, many studies have shown that galangin has potential advantages in the treatment of neurodegenerative diseases and cardiovascular and cerebrovascular diseases, which are common in the elderly. In addition, it also showed that galangin had prospective activities in the treatment of tumor, diabetes, liver injury, asthma and arthritis. PURPOSE: This review aims to systematically summarize and discuss the effects and the underlying mechanism of galangin in the treatment of age-related diseases. METHODS: We searched PubMed, SciFinder, Web of Science and CNKI literature database resources, combined with the keywords "galangin", "neurodegenerative disease", "tumor", "diabetes", "pharmacological activity", "drug combination", "pharmacokinetics", "drug delivery system" and "safety", and comprehensively reviewed the pharmacological activities and mechanism of galangin in treating age-related diseases. RESULTS: According to the previous studies on galangin, the anti-neurodegenerative activity, cardiovascular and cerebrovascular protective activity, anti-tumor activity, anti-diabetes activity, anti-arthritis activity, hepatoprotective activity and antiasthmatic activity of galangin were discussed, and the related mechanisms were classified and summarized in detail. In addition, the drug combination, pharmacokinetics, drug delivery system and safety of galangin were furtherly discussed. CONCLUSIONS: This review will provide reference for galangin in the treatment of age-related diseases. Meanwhile, further experimental research and long-term clinical trials are needed to determine the therapeutic safety and efficacy of galangin.


Asunto(s)
Artritis , Asma , Flavonas , Anciano , Humanos , Estudios Prospectivos , Envejecimiento
2.
Phytother Res ; 37(6): 2419-2436, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36781177

RESUMEN

Anti-Alzheimer's disease (AD) drugs can only change the symptoms of cognitive impairment in a short time but cannot prevent or completely cure AD. Thus, a more effective drug is urgently needed. Cornuside is extracted from Corni Fructus, a traditional Chinese medicine that plays an important role in treating dementia and other age-related diseases. Thus, the study aimed to explore the effects and mechanisms of Cornuside on the D-galactose (D-Gal) induced aging mice accompanied by cognitive decline. Initially, we found that Cornuside improved the learning and memory abilities of D-Gal-treated mice in behavioral experiments. Pharmacological experiments indicated that Cornuside acted on anti-oxidant and anti-inflammatory effects. Cornuside also reversed acetylcholin esterase (AChE) activity. Meanwhile, pathology tests showed that Cornuside had a protective effect on neuron damage. Cornuside increased the expression of brain-derived neurotrophic factor (BDNF), and down-regulated the expression of receptor for advanced glycosylation end products (RAGE), ionized calcium binding adapter molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) respectively. Further studies claimed that Cornuside had important effects on the expression of IκBα and extracellular signal-regulated kinases 1/2 (ERK1/2). These effects might be achieved through regulating the AGEs-RAGE-IκBα-ERK1/2 signaling pathway, among which, ERK1/2 might be the key protein. The study provides direct preclinical evidence for the research of Cornuside, which may become an excellent candidate drug for the treatment of aging-related AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/farmacología , Inhibidor NF-kappaB alfa/uso terapéutico , Transducción de Señal , Envejecimiento , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Encéfalo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Galactosa/efectos adversos
3.
Phytochemistry ; 204: 113446, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152725

RESUMEN

The genus Datura has been used as an important traditional medicine in China, as well as in other countries worldwide. This review summarizes the latest progress and perspective of the genus Datura, from the aspects of botany, traditional uses, phytochemistry, pharmacology, and toxicology. Up to May 2022, literatures were collected from online scientific databases, including Google Scholar, PubMed, SciFinder, CNKI, ACS, and Web of Science, and information was also obtained from "Flora Republicae Populairs Sinicae", Chinese Pharmacopoeia, Chinese herbal classic books, and Ph.D. and M. Sc. dissertations. Studies on chemical constituents, pharmacological activities, and toxicity are mainly focused on D. metel, D. stramonium, and D. inoxia. Furthermore, 496 compounds have been discovered from the genus Datura, including withanolides, alkaloids, flavonoids, terpenoids, phenylpropanoids, steroids, amino acids, aromatics, and aliphatics. Among them, withanolides and alkaloids are two main active constituents. Pharmacological activities of extracts and compounds have been studied from the aspects of antitumor, antiinflammation, antioxidant, antimicrobial, antispasmodic, anticoagulant, analgesic, hypoglycemic and xanthine oxidase inhibitory activities, as well as the effects on central nervous system and immune system. Modern pharmacological studies have provided more clues to elucidate the traditional usages. The toxicity of the genus Datura is noteworthy, especially the potential toxicity on organs. This review would provide a comprehensive and constructive overview for new drug development and utilization of the genus Datura.

4.
Phytother Res ; 36(6): 2272-2299, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35583806

RESUMEN

Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.


Asunto(s)
Cornus , Iridoides , Transducción de Señal , Cornus/química , Humanos , Iridoides/farmacocinética , Iridoides/farmacología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología
5.
J Ethnopharmacol ; 293: 115252, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35405255

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cornus officinalis Sieb. et Zucc., traditional Chinese medicine, has been widely used in the treatment of dementia. Cornel iridoid glycosides of Cornus officinalis is therapeutic to Alzheimer's disease (AD), while its pharmacodynamic material basis is not clear. Cornuside, an iridoid glycoside extracted from of Cornus officinalis Sieb. et Zucc, might be a potential anti-AD candidate. AIM OF THE STUDY: Cornuside was evaluated for its effect on scopolamine induced AD mice, and its action mechanisms were explored. MATERIALS AND METHODS: ICR mice were administered with 1 mg/kg scopolamine intraperitoneally to induce amnesia. The therapeutic effect of cornuside of cognitive function was evaluated via series of behavioral tests, including Morris water maze test, step-through test and step-down test. In addition, specific enzyme reaction tests were used to detect the content of acetylcholine (ACh) and malondialdehyde (MDA), as well as the activities of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), choline acetyltransferase (ChAT), superoxide dismutase (SOD), catalase (CAT), monoamine oxidase (MAO) in the brain. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). RESULTS: Cornuside ameliorated the spatial memory impairment in Morris water maze test and cognitive disruption in step-through and step-down test. Furthermore, cornuside improved the level of ACh by reducing the activities of AChE and BuChE, and increasing the activity of ChAT in hippocampus. Cornuside also increased the levels of monoamine neurotransmitters by inhibiting MAO activity in hippocampus and cortex. In addition, cornuside attenuated MDA by enhancing the activities of SOD and CAT in hippocampus and cortex. CONCLUSION: Cornuside improved cognitive dysfunction induced by scopolamine in behavioral tests. The mechanisms of cornuside were further investigated from the aspects of neurotransmitters and oxidative stress. Cornuside could inhibit oxidative stress and neurotransmitter hydrolases, increase ACh and monoamine neurotransmitters, which finally contributed to its therapeutic effect on scopolamine induced amnesia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Acetilcolina/farmacología , Acetilcolinesterasa/metabolismo , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Animales , Butirilcolinesterasa , Colina O-Acetiltransferasa/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Glucósidos , Hipocampo , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos ICR , Monoaminooxidasa , Neurotransmisores , Estrés Oxidativo , Piranos , Escopolamina/farmacología , Superóxido Dismutasa/metabolismo
6.
Bioorg Chem ; 117: 105399, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34688131

RESUMEN

Cornusdiridoid A-F (1-6), six unusual cornuside-morroniside secoiridoid dimers, and their possible new biogenetic precursor, 3″,5″-dehydroxycornuside (7), together with four known secoiridoids (8-11), were obtained from the fruits of Cornus officinalis. Their structures were elucidated on the basis of various spectroscopic and chemical methods. A plausible biosynthetic pathway of compounds 1-11 was proposed. The α-glucosidase inhibitory, antioxidant and anti-inflammatory activities of these isolates were evaluated. Some of them emerged out as potent antidiabetic, anti-inflammatory and free radical scavenging agents. Molecular docking was also carried out for antidiabetic target α-glucosidase to investigate the possible binding modes of the most potent α-glucosidase inhibitor, vincosamide (9). These results revealed that the secoiridoids from C. officinalis fruits may be served as new potential antidiabetic agents to prevent and treat type 2 diabetes.


Asunto(s)
Antioxidantes/farmacología , Cornus/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Iridoides/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas , Frutas/química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Iridoides/química , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7 , alfa-Glucosidasas/metabolismo
7.
J Ethnopharmacol ; 281: 114526, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34400264

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Loganin, an iridoid glycoside, is one of the quality control indexes of Cornus officinalis Sieb. et Zucc. Increasing evidence emphasize the important role of inflammation in the pathology of depression, which links depression with other chronic diseases. Loganin prevents inflammatory response in multiple diseases and reverses depressive-like behaviors. However, the mechanisms underlying antidepressant-like effects of loganin for the treatment of inflammation-associated depression are not utterly understood. AIM OF THE STUDY: The present study was designed to predict the potential targets of loganin against inflammation-associated depression using a network pharmacology approach. MATERIALS AND METHODS: Pharmmapper and Uniport were used to predict loganin-related targets. Targets of inflammation were identified through GeneCards databases and Online Mendelian Inheritance in Man (OMIM). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to identify the potential mechanism. Finally, qRT-PCR and ELISA were used to confirm the role of loganin on these targets. RESULTS: There were 15 nodes in the loganin-inflammation-depression intersection targets network. In the network, the degree value of CTNNB1 was above 3. Among top ten pathways identified by KEGG analysis, Th1/Th2 cell differentiation and IL-17 signaling pathways were related with both inflammation and depression. As indicated by qRT-PCR results, loganin increased CTNNB1 mRNA level. Moreover, loganin elevated M2 markers of microglia but decreased M1 markers of microglia against lipopolysaccharide (LPS), indicated by qRT-PCR results and ELISA results. CONCLUSION: CTNNB1 was the main target of loganin. Loganin alleviated LPS-induced inflammation through inhibiting M1 polarization of microglia. Our results provide a better understanding of loganin-induced antidepressant-like effects for the treatment of inflammation-associated depression.


Asunto(s)
Antidepresivos/farmacología , Iridoides/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/genética , Depresión/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Farmacología en Red , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Factor de Necrosis Tumoral alfa/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
Phytochemistry ; 186: 112736, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33799193

RESUMEN

Euphorbia ebracteolata Hayata, as a traditional medicine, is widely distributed in China, Korea and Japan. In China, the dried root of this plant is named 'langdu'. It is traditionally used to treat oedema, skin ulcers, abdominal distension, cough, asthma, tuberculosis swelling and other diseases. Previous studies have found that the chemical constituents of E. ebracteolata are mainly concentrated in terpenoids, acetophenones, and flavonoids. Both extracts and pure compounds from E. ebracteolata were found to possess many pharmacological activities, such as anticancer, anti-inflammatory, antiviral, and antimicrobial effects. In addition, it was reported that E. ebracteolata shows toxicity. To provide inspiration for further in-depth studies on this plant, this review will provide a timely and systematic summary of E. ebracteolata in traditional uses, phytochemistry, pharmacology toxicology, and quality control.


Asunto(s)
Botánica , Euphorbia , Euphorbiaceae , China , Etnofarmacología , Japón , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/toxicidad , Control de Calidad , República de Corea
9.
J Ethnopharmacol ; 264: 112915, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32360044

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Stellera Linn. consists of species of perennial herbs and shrubs, and is mainly distributed in the temperate regions of east Asia to west Asia. There are 10∼12 species in the world, two species in China: Stellera chamaejasme Linn. and Stellera formosana Hayata ex Li. As recorded, the roots of Stellera species are used to dissipate phlegm and relieve pain. The roots and the barks can be used for papermaking. AIM OF THIS REVIEW: This review aims to summarize the ethnopharmacological uses, chemical constituents, pharmacological activities, clinical applications and toxicology of the genus Stellera to better understand their therapeutic potential in the future. MATERIALS AND METHODS: The relevant information of the genus Stellera was collected from scientific databases (Pubmed, ACS website, SciFinder Scholar, Elsevier, Google Scholar, Web of Science and CNKI). Information was also gathered from 'Flora Republicae Popularis Sinicae (〈〈〉〉)', folk records, conference papers on ethnopharmacology, Ph.D. and Masters' Dissertation. RESULTS: Stellera plants have been studied as traditional folk medicines all around the world. The chemical constituents of Stellera species mainly comprise terpenoids, flavonoids, coumarins, lignans, and so on. Extracts and compounds of Stellera species exhibit extensive pharmacological activities, such as anti-tumor, anti-viral, anti-convulsive, anti-epileptic, anti-bacterial and anti-insect activities, etc. Clinical applications have suggested that the genus Stellera has the effects in treating several skin diseases and cancers, however, the results should be further verification. The genus Stellera plants are toxic and should be used reasonable. CONCLUSION: This paper reviewed the ethnopharmacological uses, chemical constituents, pharmacology, clinical applications and toxicology of the genus Stellera. The genus Stellera has broad application prospects. However, further in-depth studies are needed to determine the medical uses of the genus and its chemical constituents, pharmacological activities, clinical applications and toxicology.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Etnofarmacología/métodos , Medicina Tradicional/métodos , Fitoquímicos/uso terapéutico , Thymelaeaceae , Pruebas de Toxicidad/métodos , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antivirales/aislamiento & purificación , Antivirales/farmacología , Antivirales/uso terapéutico , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Etnofarmacología/tendencias , Humanos , Medicina Tradicional/tendencias , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología
10.
Phytochemistry ; 171: 112232, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31911266

RESUMEN

Corni Fructus, also known as the fruit of Cornus officinalis Sieb. et Zucc., has long been used as a traditional Chinese medicine and is widely consumed as a nutritional food in the form of function drink and wine. Recently, Corni Fructus has attracted considerable interest because of its anti-diabetic effects. A systematic phytochemical investigation of Corni Fructus was performed to find anti-diabetic components, which led to the isolation of 10 unreported iridoid glycosides, cornusdiglycosides A-J (1-8, 9a/9b and 10a/10b). Their chemical structures were determined through spectroscopic analysis (ultraviolet [UV], infrared [IR], high-resolution electrospray ionisation mass spectroscopy [HRESIMS], one-dimensional [1D] and two-dimensional [2D] nuclear magnetic resonance [NMR]). Such morroniside-type diglycosides were first reported from natural sources, and all isolates were evaluated for α-glucosidase inhibitory activity. The results showed that all compounds (1-10) exhibited α-glucosidase (from Saccharomyces cerevisiae) inhibitory activities with IC50 values ranging from 78.9 ± 4.09 to 162.2 ± 9.17 µM, whereas acarbose, the positive control, displayed α-glucosidase inhibitory activity with IC50 value of 118.9 ± 7.89 µM.


Asunto(s)
Cornus/química , Inhibidores de Glicósido Hidrolasas/farmacología , Glicósidos/farmacología , Glucósidos Iridoides/farmacología , Fitoquímicos/farmacología , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Glicósidos/química , Glicósidos/aislamiento & purificación , Humanos , Glucósidos Iridoides/química , Glucósidos Iridoides/aislamiento & purificación , Conformación Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación
11.
Acta Pharmacol Sin ; 39(12): 1913-1922, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29802302

RESUMEN

Host cdc2-like kinase 1 (CLK1) is responsible for the alternative splicing of the influenza virus M2 gene during influenza virus infection and replication that has been recognized as a potential anti-influenza virus target. In this study, we showed that gallocatechin-7-gallate (J10688), a novel CLK1 inhibitor isolated from Pithecellobium clypearia Benth, exerted potent anti-influenza virus activity in vivo and in vitro. ICR mice were intranasally infected with a lethal dose of H1N1. Administration of J10688 (30 mg·kg-1·d-1, iv, for 5 days) significantly increased the survival rate of the H1N1-infected mice to 91.67% and prolong their mean survival time from 5.83 ± 1.74 days to 13.66 ± 1.15 days. J10688 administration also slowed down body weight loss, significantly alleviated influenza-induced acute lung injury, reduced lung virus titer, elevated the spleen and thymus indexes, and enhanced the immunological function. We further explored its anti-influenza mechanisms in the H1N1-infected A549 cells: as a novel CLK1 inhibitor, J10688 (3, 10, 30 µmol/L) dose-dependently impaired synthesis of the viral proteins NP and M2, and significantly downregulated the phosphorylation of splicing factors SF2/ASF and SC35, which regulate virus M2 gene alternative splicing. As a novel CLK1 inhibitor with potent anti-influenza activity in vitro and in vivo, J10688 could be a promising antiviral drug for the therapy of influenza A virus infection.


Asunto(s)
Antivirales/farmacología , Catequina/análogos & derivados , Fabaceae/química , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Células A549 , Animales , Catequina/farmacología , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos ICR , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Bazo/patología , Replicación Viral/efectos de los fármacos
12.
Chin J Nat Med ; 16(1): 53-62, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29425590

RESUMEN

Naodesheng (NDS) formula, which consists of Rhizoma Chuanxiong, Lobed Kudzuvine, Carthamus tinctorius, Radix Notoginseng, and Crataegus pinnatifida, is widely applied for the treatment of cardio/cerebrovascular ischemic diseases, ischemic stroke, and sequelae of cerebral hemorrhage, etc. At present, the studies on NDS formula for Alzheimer's disease (AD) only focus on single component of this prescription, and there is no report about the synergistic mechanism of the constituents in NDS formula for the potential treatment of dementia. Therefore, the present study aimed to predict the potential targets and uncover the mechanisms of NDS formula for the treatment of AD. Firstly, we collected the constituents in NDS formula and key targets toward AD. Then, drug-likeness, oral bioavailability, and blood-brain barrier permeability were evaluated to find drug-like and lead-like constituents for treatment of central nervous system diseases. By combining the advantages of machine learning, molecular docking, and pharmacophore mapping, we attempted to predict the targets of constituents and find potential multi-target compounds from NDS formula. Finally, we built constituent-target network, constituent-target-target network and target-biological pathway network to study the network pharmacology of the constituents in NDS formula. To the best of our knowledge, this represented the first to study the mechanism of NDS formula for potential efficacy for AD treatment by means of the virtual screening and network pharmacology methods.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Autoanálisis , Descubrimiento de Drogas/métodos , Medicamentos Herbarios Chinos/farmacología , Redes Neurales de la Computación , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Disponibilidad Biológica , Biomarcadores , Biomarcadores Farmacológicos , Bases de Datos de Compuestos Químicos , Combinación de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/química , Permeabilidad
13.
Am J Chin Med ; 45(4): 863-877, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28595501

RESUMEN

Astragaloside IV (AS-IV) is one of the active ingredients in Astragalus membrananceus (Huangqi), a traditional Chinese medicine. The present study investigated the effects of AS-IV on Ca[Formula: see text] handling in cardiac myocytes to elucidate its possible mechanism in the treatment of cardiac disease. The results showed that AS-IV at 1 and 10[Formula: see text][Formula: see text]M reduced KCl-induced [Ca[Formula: see text]]i increase ([Formula: see text] from 1.33[Formula: see text][Formula: see text][Formula: see text]0.04 (control, [Formula: see text] 28) to 1.22[Formula: see text][Formula: see text][Formula: see text]0.02 ([Formula: see text], [Formula: see text] 29) and 1.22[Formula: see text][Formula: see text][Formula: see text]0.02 ([Formula: see text] 0.01, [Formula: see text]), but it enhanced Ca[Formula: see text] release from SR ([Formula: see text] from 1.04[Formula: see text][Formula: see text][Formula: see text]0.01 (control, [Formula: see text]) to 1.44[Formula: see text][Formula: see text][Formula: see text]0.03 ([Formula: see text], [Formula: see text]) and 1.60[Formula: see text][Formula: see text][Formula: see text]0.04 ([Formula: see text] 0.01, [Formula: see text]0), in H9c2 cells. Similar results were obtained in native cardiomyocytes. AS-IV at 1 and 10[Formula: see text][Formula: see text]M inhibited L-type Ca[Formula: see text] current ([Formula: see text] from [Formula: see text]4.42[Formula: see text][Formula: see text][Formula: see text]0.58 pA/pF of control to [Formula: see text]2.25[Formula: see text][Formula: see text][Formula: see text]0.12 pA/pF ([Formula: see text] 0.01, [Formula: see text] 5) and [Formula: see text]1.78[Formula: see text][Formula: see text][Formula: see text]0.28 pA/pF ([Formula: see text] 0.01, [Formula: see text] 5) respectively, when the interference of [Ca[Formula: see text]]i was eliminated due to the depletion of SR Ca[Formula: see text] store by thapsigargin, an inhibitor of Ca[Formula: see text] ATPase. Moreover, when BAPTA, a rapid Ca[Formula: see text] chelator, was used, CDI (Ca[Formula: see text]-dependent inactivation) of [Formula: see text] was eliminated, and the inhibitory effects of AS-IV on ICaL were significantly reduced at the same time. These results suggest that AS-IV affects Ca[Formula: see text] homeostasis through two opposite pathways: inhibition of Ca[Formula: see text] influx through L-type Ca[Formula: see text] channel, and promotion of Ca[Formula: see text] release from SR.


Asunto(s)
Astragalus propinquus/química , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Miocitos Cardíacos/metabolismo , Saponinas/farmacología , Retículo Sarcoplasmático/metabolismo , Triterpenos/farmacología , Animales , Células Cultivadas , Depresión Química , Cobayas , Humanos , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Saponinas/aislamiento & purificación , Estimulación Química , Triterpenos/aislamiento & purificación
14.
Yao Xue Xue Bao ; 51(5): 725-31, 2016 05.
Artículo en Chino | MEDLINE | ID: mdl-29874009

RESUMEN

This study aims to investigate the network pharmacology of Chinese medicinal formulae for treatment of Alzheimer's disease.Machine learning algorithms were applied to construct classifiers in predicting the active molecules against 25 key targets toward Alzheimer's disease(AD).By extensive data profiling, we compiled 13 classical traditional Chinese medicine(TCM) formulas with clinical efficacy for AD. There were 7 Chinese herbs with a frequency of 5 or higher in our study. Based on the predicted results, we built constituent-target, and further construct target-target interaction network by STRING(Search Tool for the Retrieval of Interacting Genes/Proteins) and target-disease network by DAVID(Database for Annotation,Visualization and Integrated Discovery) and gene disease database to study the synergistic mechanism of the herbal constituents in the Chinese traditional patent medicine. By prediction of blood-brain penetration and validation by TCMsp (traditional Chinese medicine systems pharmacology) and Drugbank, we found 7 typical multi-target constituents which have diverse structure. The mechanism uncovered by this study may offer a deep insight into the action mechanism of TCMs for AD. The predicted inhibitors for the AD-related targets may provide a good source of new lead constituents against AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Bases de Datos Factuales , Humanos , Aprendizaje Automático , Medicina Tradicional China
15.
Molecules ; 20(11): 19735-47, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26540031

RESUMEN

The rapid evolution of influenza virus makes antiviral drugs less effective, which is considered to be a major bottleneck in antiviral therapy. The key proteins in the host cells, which are related with the replication cycle of influenza virus, are regarded as potential drug targets due to their distinct advantage of lack of evolution and drug resistance. Cdc2-like kinase 1 (CLK1) in the host cells is responsible for alternative splicing of the M2 gene of influenza virus during influenza infection and replication. In this study, we carried out baculovirus-mediated expression and purification of CLK1 and established a reliable screening assay for CLK1 inhibitors. After a virtual screening of CLK1 inhibitors was performed, the activities of the selected compounds were evaluated. Finally, several compounds with strong inhibitory activity against CLK1 were discovered and their in vitro anti-influenza virus activities were validated using a cytopathic effect (CPE) reduction assay. The assay results showed that clypearin, corilagin, and pinosylvine were the most potential anti-influenza virus compounds as CLK1 inhibitors among the compounds tested. These findings will provide important information for new drug design and development in influenza treatment, and CLK1 may be a potent drug target for anti-influenza drug screening and discovery.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Gripe Humana/virología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Antivirales/química , Antivirales/uso terapéutico , Línea Celular , Efecto Citopatogénico Viral/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Orden Génico , Vectores Genéticos/genética , Humanos , Gripe Humana/tratamiento farmacológico , Concentración 50 Inhibidora , Ligandos , Modelos Moleculares , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/aislamiento & purificación , Proteínas Tirosina Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Replicación Viral/efectos de los fármacos
16.
J Chem Inf Model ; 55(1): 149-64, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25531792

RESUMEN

To determine chemical-protein interactions (CPI) is costly, time-consuming, and labor-intensive. In silico prediction of CPI can facilitate the target identification and drug discovery. Although many in silico target prediction tools have been developed, few of them could predict active molecules against multitarget for a single disease. In this investigation, naive Bayesian (NB) and recursive partitioning (RP) algorithms were applied to construct classifiers for predicting the active molecules against 25 key targets toward Alzheimer's disease (AD) using the multitarget-quantitative structure-activity relationships (mt-QSAR) method. Each molecule was initially represented with two kinds of fingerprint descriptors (ECFP6 and MACCS). One hundred classifiers were constructed, and their performance was evaluated and verified with internally 5-fold cross-validation and external test set validation. The range of the area under the receiver operating characteristic curve (ROC) for the test sets was from 0.741 to 1.0, with an average of 0.965. In addition, the important fragments for multitarget against AD given by NB classifiers were also analyzed. Finally, the validated models were employed to systematically predict the potential targets for six approved anti-AD drugs and 19 known active compounds related to AD. The prediction results were confirmed by reported bioactivity data and our in vitro experimental validation, resulting in several multitarget-directed ligands (MTDLs) against AD, including seven acetylcholinesterase (AChE) inhibitors ranging from 0.442 to 72.26 µM and four histamine receptor 3 (H3R) antagonists ranging from 0.308 to 58.6 µM. To be exciting, the best MTDL DL0410 was identified as an dual cholinesterase inhibitor with IC50 values of 0.442 µM (AChE) and 3.57 µM (BuChE) as well as a H3R antagonist with an IC50 of 0.308 µM. This investigation is the first report using mt-QASR approach to predict chemical-protein interaction for a single disease and discovering highly potent MTDLs. This protocol may be useful for in silico multitarget prediction of other diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Relación Estructura-Actividad Cuantitativa , Animales , Teorema de Bayes , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Antagonistas de los Receptores Histamínicos H3/química , Antagonistas de los Receptores Histamínicos H3/farmacología , Humanos , Ligandos , Terapia Molecular Dirigida , Curva ROC , Ratas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA