Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Ethnopharmacol ; 297: 115520, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35792278

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Marigold flavonoids, extracted from marigold (Tagetes erecta L.) inflorescence residues, have attracted significant attention with respect to antioxidant, anti-inflammatory and chelating properties. However, the toxicity of marigold flavonoids have not yet been fully investigated. AIM OF THE STUDY: The main purpose of this study was to assess the safety of marigold flavonoids extracted from Marigold (Tagetes erecta L.) in order to provide information on its nonclinical safety. Thus, the acute oral toxicity, in vitro Ames test, sperm aberration study, bone marrow micronucleus test, subchronic oral toxicity test, and teratogenic potential were carried out in rats or mice. MATERIALS AND METHODS: For an acute oral toxicity test, SD rats and ICR mice (male and female, n = 5) orally received a single dose of 5000 mg/kg marigold flavonoids. Evaluation of marigold flavonoids genotoxic potential with a battery of tests, including an in vitro bacterial reverse mutation test using four mutant strains of Salmonella typhimurium (TA97、TA98、TA100、TA102), an sperm aberration test and an in vivo micronucleus test using bone marrow cells ICR mice that were orally administered marigold flavonoids, an subchronic oral toxicity study and teratogenic test employing male and female SD rats that were orally administered marigold flavonoids. All animals tests were completed in accordance with GB 15193 for toxicity tests. RESULTS: In the acute oral toxicity test, marigold flavonoids given at the dose of 5000 mg/kg body weight for 14 days didn't produce any abnormal clinical symptoms or mortality in SD rats and ICR mice (both sex, n = 5). There was no evidence of genotoxicity of marigold flavonoids based on the results of the in vitro bacterial reverse mutation test (up to 1250 µg/plate), the sperm aberration test (up to 5000 mg/kg body weight), the in vivo micronucleus test (up to 5000 mg/kg body weight), the subchronic oral toxicity study (up to 10 g/kg feed dose) and the teratogenic test (up to 1250 mg/kg body weight). CONCLUSIONS: We found that marigold flavonoids are safe with regard to acute toxicity in rats or mice as well as genotoxicity such as mutagenesis or clastogenesis under the present experimental conditions. These results might support the safety of marigold flavonoids as a potential therapeutic material for the traditional use of herbal medicines and for the further development of novel antioxidant.


Asunto(s)
Calendula , Flavonoides , Animales , Antioxidantes , Peso Corporal , Femenino , Flavonoides/toxicidad , Inflorescencia , Masculino , Ratones , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Extractos Vegetales/toxicidad , Ratas , Ratas Sprague-Dawley , Semillas
2.
Food Funct ; 11(7): 6387-6406, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32613954

RESUMEN

Hyperuricemia (HUA) is considered a potent risk factor for the development of gout, renal failure, and cardiovascular disease. The current project was designed to use stevia (Stevia rebaudiana Bertoni) byproduct, named stevia residue extract (STVRE), for the treatment of HUA. Male Kunming mice were divided into six groups: normal control, model control, positive control (allopurinol, 5 mg per kg body weight [bw]), STVRE-1 (75 mg per kg bw), STVRE-2 (150 mg per kg bw), and STVRE-3 (300 mg per kg bw). HUA was induced by the administration of potassium oxonate (100 mg per kg bw), fructose (10% w/v), and yeast extract (100 mg per kg bw) for 8 weeks. STVRE significantly (p < 0.05) decreased uric acid (UA) production and ameliorated UA excretion by interacting with urate transporters. The STVRE remarkably attenuated oxidative stress mediated by UA and downregulated inflammatory-related response markers such as COX-2, NF-κB, PGE2, IL-1ß, and TNF-α. Furthermore, STVRE also reversed HUA-induced abnormalities in kidneys compared with the MC group. The results of our study suggest that STVRE has potential to attenuate hyperuricemia and renal protective effects, and may be used as a natural supplement for the possible treatment of UA-related disorders.


Asunto(s)
Hiperuricemia/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Stevia , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos , Fitoterapia , Extractos Vegetales/administración & dosificación
3.
Biosci Biotechnol Biochem ; 84(10): 2128-2138, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32614708

RESUMEN

Various pharmacological properties of Xinjiang licorice flavonoids have been reported recently. We have investigated constituents corresponding to distinct peaks on the high-performance liquid chromatography (HPLC) profile of a flavonoid-rich extract from licorice, and identified 13 flavonoids, including licochalcone A (1), licochalcone B (3), glabrone (4), and echinatin (5), by isolating them and then performing high-resolution electrospray ionization mass spectrometry and 1H nuclear magnetic resonance (NMR) spectral analyses. We then applied the 1H quantitative NMR (qNMR) method for analysis of major flavonoids, 1 and 3-5 in the extract. The 1H qNMR results were supported by 13C NMR analysis. The results demonstrated the utility of the combination of HPLC profiling and qNMR analyses for quality control of Xinjiang licorice. Additionally, we observed a moderate inhibitory effect of the most abundant constituent, licochalcone A (1), on acetylcholine esterase activity, suggesting utility as a seed for drug development.


Asunto(s)
Cromatografía Líquida de Alta Presión , Glycyrrhiza/química , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Acetatos/química , Metanol/química , Extractos Vegetales/aislamiento & purificación , Control de Calidad
4.
J Colloid Interface Sci ; 570: 80-88, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32142905

RESUMEN

We previously explored citrus oil emulsion stabilized by citrus pectin. In this report, we characterized key parameters of the citrus pectin mesoscopic structure and their effect on emulsifying capacity, and explored the underlying mechanism by determining the interfacial properties, emulsifying ability, and micromorphology. To generate different mesoscopic structure, citrus pectins were hydrolyzed or regulated by pH and NaCl. Hydrolysis decreased the size of citrus pectin mesoscopic structure with constant compactness, leading to superior interfacial properties but inferior emulsifying ability. In contrast, pH and NaCl regulation decreased the mesoscopic structure size and increased the compactness, and pH- and NaCl-regulated citrus pectin formed a compact absorbed layer at the interface to resist droplet coalescence/flocculation during homogenization. Our results support the importance of compactness of the citrus pectin mesoscopic structure on emulsifying capacity. This study increased our understanding on the relationship between the mesoscopic structures of polysaccharide emulsifier and emulsifying ability.


Asunto(s)
Pectinas/química , Conformación de Carbohidratos , Citrus/química , Emulsiones/química , Concentración de Iones de Hidrógeno , Hidrólisis , Peso Molecular , Tamaño de la Partícula , Propiedades de Superficie
5.
Crit Rev Food Sci Nutr ; 60(4): 566-583, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30580548

RESUMEN

Citrus-derived flavonoids play important roles in the regulation of physiological conditions of citrus plants, including color changes of flower and fruit, flavor development, and anti-stress physiology. Moreover, citrus flavonoids possess multiple health-promoting effects in humans, and they are important ingredients for nutraceuticals and functional foods. The biosynthesis of flavonoids in citrus plants is of special significance because it determines the chemical structures and bioaccumulation of these bioactive compounds in the plants, which consequently influences their physiological functions in both citrus plants and human body. This review systematically summarizes: 1) the biosynthesis pathway of citrus-derived flavonoids, 2) the biosynthesis location and distribution of flavonoids in citrus plants, 3) the factors affecting flavonoid biosynthesis, 4) the biological significance of flavonoid biosynthesis in citrus plants, and 5) the health-promoting properties of citrus-derived flavonoids. The collation of this information provides scientific guidance for the development of healthy citrus foods and other health-promoting products containing citrus flavonoids.


Asunto(s)
Citrus/química , Dieta Saludable , Suplementos Dietéticos , Flavonoides/biosíntesis , Frutas/química , Humanos
6.
Carbohydr Polym ; 229: 115524, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826475

RESUMEN

Structure and properties of pectin can be affected by extraction methods. In this study, grapefruit peel pectins extracted by HCl (at pH 1 [P1], 2 [P2], and 3 [P3]) and NaOH (at pH 9 [P9], 10 [P10], and 11 [P11]) were prepared and characterized. Atomic force microscopy (AFM) provided direct evidence of complex nano-structural patterns of pectins and revealed cross-linked networks of P10 and P11. Small-angle X-ray scattering (SAXS) demonstrated that P1, P2, and P3 possessed a relatively extended conformation, whereas P9, P10, and P11 displayed a three-dimensional structure and folded conformation. The compact and extended conformations of P3 contributed to its high viscosity in solution and the stability of the formed emulsion (75%). Porous surface and larger three-dimensional nanostructure (Dmax: 23 nm) of P10 facilitated its ion-binding capacity. Our results provide valuable insight into relationship between extraction methods and structure-properties of pectin, facilitating design of functional pectins.


Asunto(s)
Citrus paradisi/metabolismo , Ácido Clorhídrico/química , Pectinas/química , Hidróxido de Sodio/química , Emulsiones/química , Frutas/metabolismo , Concentración de Iones de Hidrógeno , Nanoestructuras/química , Extractos Vegetales/metabolismo , Porosidad , Reología , Dispersión del Ángulo Pequeño , Viscosidad , Difracción de Rayos X
7.
Food Chem ; 289: 340-350, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30955622

RESUMEN

Dried tangerine peel (DTP) is an excellent plant resource that has been used as ingredients for both food and traditional Chinese medicine. In this study, the efficiency of four different dietary preparation methods (i.e. soaking, boiling, steaming, and ethanol extraction) in extraction of functional compounds (i.e. flavonoids and essential oil constituents) from DTP was evaluated systematically for the first time. To conduct a comprehensive evaluation of the extraction of the functional compounds, a synthetic evaluation model based on a weighting method was established. The optimum conditions of each dietary preparation method (e.g., time, temperature, solid-liquid ratio, etc.) were determined by response surface methodology. Ethanol extraction showed the best extraction efficiency, followed by soaking, boiling, and steaming. Additionally, different DTP extracts were shown to be clearly distinguished by electronic eye and electronic tongue. This research provides essential findings for the effective dietary instruction of DTP consumption.


Asunto(s)
Citrus , Manipulación de Alimentos/métodos , Frutas/química , Extractos Vegetales/química , Etanol , Flavonoides/aislamiento & purificación , Calor , Vapor
8.
J Agric Food Chem ; 66(49): 12978-12988, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30462506

RESUMEN

Citrus pectin and citrus oil are the main functional components of citrus residuals in the processing industry. In this study, citrus oil emulsions were fabricated for the first time using four different citrus pectins (orange, mandarin, grapefruit, and commercial citrus pectins) as the emulsifier. The influence mechanism of citrus variety and acid treatment (pH 1, 2, 3, 4, 5, 6, and 7) on the emulsifying capacity of citrus pectins was systematically investigated by understanding the relationship between molecular structure, solution property, interfacial property, and emulsion property. The results suggest that citrus variety and acid treatment can significantly influence the emulsifying capacity in relation to the molecular structure and molecular state of citrus pectins. A smaller molecular size of citrus pectin and lower pH between 2 and 7 produced a reduction in aggregate size, which improved the interfacial capacity and emulsifying ability by promoting their distribution at the interface. Although hydrolyzed citrus pectins at pH 1 with a lower molecular size exhibited better interfacial capacity, citrus oil emulsions were unstable due to electrostatic attraction caused by partially positive charged citrus pectins. Fine stable citrus oil emulsion was prepared using mandarin pectin with a relative high methyl ester content and small molecular size at pH 2. Our results provide a scientific basis for the fabrication of citrus oil emulsion based on citrus pectin and facilitate the application of citrus residuals in the food industry.


Asunto(s)
Citrus/química , Emulsiones/química , Pectinas/química , Aceites de Plantas/química , Citrus paradisi , Emulsionantes/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Soluciones/química , Especificidad de la Especie
9.
Food Chem ; 237: 786-792, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28764068

RESUMEN

Occurrence of Rhodamine B (RhB) contamination in paprika caused by agricultural materials during the vegetation process has been reported. It may transfer during the process of active compounds extraction, and eventually exist in final products. Herein, the re-distribution of RhB during the extraction process was assessed in terms of RhB contents, as well as mass, color value and capsaicinoids yield of each process. Results revealed that natural RhB contamination at 0.55-1.11µg/kg originated from raw paprika fruit then transferred with the extraction proceeded. About 95.5% of RhB was found in red oleoresin. After separation of red oleoresin, 91.6% of RhB was remained in capsicum oleoresin, only 3.7% in paprika red. These results were consistent with total capsaicinoids recovery of each product. The RhB levels in edible capsicum oleoresin in our present study at 0.01-0.34µg/kg did not exceed the legal limits established by the European Union.


Asunto(s)
Capsicum , Frutas , Extractos Vegetales , Rodaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA