Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(45): e2304324, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37434331

RESUMEN

Photodynamic therapy (PDT) acts as a powerful weapon against infectious diseases for its enormous antimicrobial activity that quickly elicits storms of reactive oxygen species (ROS). Nevertheless, redundant ROS during treatment inevitably bring detriments in revascularization. To address this dilemma, an innovative P-N bio-heterojunction (bio-HJ) material consisting of p-type copper sulfide (p-CuS), n-type bismuth sulfide (n-Bi2 S3 ), and lactate oxidase (LOx) for effective treatment of recalcitrant infectious wounds by promoting angiogenesis is devised. LOx exhausts lactic acid accumulated in infection environment and converts it to hydrogen peroxide (H2 O2 ), which subsequently yields bactericidal hydroxyl radicals (·OH) via Fenton-like reactions. Ultimately, the P-N bio-HJs exert synergistic photothermal, photodynamic, and chemodynamic effects for rapid bacterial annihilation. Moreover, in vitro and RNA-seq analyses reveal that the crafted bio-HJs dramatically expedite the proliferation of L929 cells and promote angiogenesis by up-regulating angiogenic gene expression in hypoxia-inducible factor-1 (HIF-1) signaling pathway, which may ascribe to the evolution of H2 S in response to the infection microenvironment. Critically, results of in vivo experiments have authenticated that the bio-HJs significantly boost healing rates of full-thickness wounds by slaughtering bacteria, elevating angiogenesis, and promoting cytothesis. As envisioned, this work furnishes a novel tactic for the effective treatment of bacteria-invaded wound using H2 S-liberating P-N bio-HJs.


Asunto(s)
Fotoquimioterapia , Piel , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Radical Hidroxilo , Regeneración , Peróxido de Hidrógeno
2.
Small ; 18(12): e2105988, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35088512

RESUMEN

For quick disinfection treatment, phototherapy, including photothermal therapy and photodynamic therapy, has emerged as a promising alternative to conventional methods. However, the bactericidal effect of phototherapy, which only works upon light, is short-lived. The remaining bacteria in situ may repopulate when the irradiation of light is withdrawn. To address this refractory concern, an antibacterial fibrous membrane consisting of electrospun poly (polycaprolactone) scaffolds and polydopamine (pDA) coated MXene/Ag3 PO4 bioheterojunctions (MX@AgP bio-HJs) is devised and developed. Upon near-infrared (NIR) illumination, the MX@AgP nanoparticle (NP) in nanofibrous electrospun membranes exert the excellent bactericidal effect of phototherapy and release Ag+ ions which stop the remaining bacteria from multiplying in the dark state. When removing NIR light, pDA in situ reduces Ag+ ions to Ag0 NPs to realize the self-rechargeability of Ag+ ions and provides enough Ag+ ions for the second phototherapy. In vivo results show that photoactivated nanofibrous membranes can re-shape an infected wound microenvironment to the regenerative microenvironment through killing bacteria, ceasing bleeding, increasing epithelialization, and collagen deposition on the wound bed, as well as promoting angiogenesis. As predicted, the proposal work offers potential prospects for nanofibrous membranes with NIR-assisted "self-rechargeable" antibacterial properties to treat bacteria-infected full-thickness wounds.


Asunto(s)
Nanofibras , Antibacterianos/farmacología , Fototerapia , Regeneración , Piel
3.
Photomed Laser Surg ; 35(2): 98-104, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27827556

RESUMEN

OBJECTIVE: The objective of this study was to investigate the effect of a new water-cooled Nd:YAG laser on dentinal tubule occlusion. BACKGROUND DATA: The effect of water-cooled Nd:YAG laser on dentinal tubule occlusion has not been reported. METHODS: Acid-etched dentin samples were randomly divided into three groups: (1) dentin control, (2) dentin treated by Nd:YAG laser, (3) dentin treated by water-cooled Nd:YAG laser. After laser irradiation, half of the samples were immersed in a 6 wt% citric acid (pH 1.5) solution for 1 min to evaluate the acid resistance. The morphologies of dentin surfaces were characterized by scanning electron microscopy. The number and diameters of the open dentinal tubules were analyzed by one-way and two-way analyses of variance. RESULTS: Both the Nd:YAG laser and water-cooled Nd:YAG laser melted the superficial layer of dentin, which caused dentinal tubule occlusion in most areas and diameter reduction of the rest open tubules. Microcracks on the dentin surface were only observed in the Nd:YAG laser group. The tubule occlusion induced by the two lasers showed a good acid resistance. CONCLUSIONS: The effect of water-cooled Nd:YAG laser on dentinal tubule occlusion is similar to that of the Nd:YAG laser. The dentinal tubule occlusion induced by the two lasers could resist acid challenge to some extent.


Asunto(s)
Crioterapia/métodos , Dentina/efectos de la radiación , Láseres de Estado Sólido/uso terapéutico , Diente Molar/efectos de la radiación , Análisis de Varianza , Oclusión Dental , Sensibilidad de la Dentina/terapia , Humanos , Técnicas In Vitro , Microscopía Electrónica de Rastreo/métodos , Análisis Multivariante , Agua/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA