Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 142(7): e39, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31145451

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Epilepsia/prevención & control , Glutatión/metabolismo , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Recuento de Células , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/prevención & control , Modelos Animales de Enfermedad , Estimulación Eléctrica , Epilepsia/complicaciones , Proteína HMGB1/sangre , Hipocampo/metabolismo , Humanos , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas , Estado Epiléptico/complicaciones , Estado Epiléptico/metabolismo , Estado Epiléptico/prevención & control , Sulfóxidos
2.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575153

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Epilepsia/tratamiento farmacológico , Dominios HMG-Box/efectos de los fármacos , Proteína HMGB1/sangre , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biosíntesis , Hipocampo/metabolismo , Isotiocianatos/farmacología , Masculino , Degeneración Nerviosa/dietoterapia , Neuronas/metabolismo , Ratas , Sulfóxidos
3.
Toxicol Appl Pharmacol ; 326: 34-42, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28400118

RESUMEN

Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD.


Asunto(s)
Antioxidantes/farmacología , Antiparkinsonianos/farmacología , Encéfalo/efectos de los fármacos , Intoxicación por MPTP/prevención & control , Metaloporfirinas/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Administración Oral , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacocinética , Conducta Animal/efectos de los fármacos , Disponibilidad Biológica , Biomarcadores/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Permeabilidad Capilar , Modelos Animales de Enfermedad , Dopamina/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Semivida , Inyecciones Intraperitoneales , Intoxicación por MPTP/etiología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/fisiopatología , Masculino , Metaloporfirinas/administración & dosificación , Metaloporfirinas/farmacocinética , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacocinética , Prueba de Desempeño de Rotación con Aceleración Constante
4.
Neurobiol Dis ; 64: 8-15, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24361554

RESUMEN

Steady-state levels of reactive oxygen species (ROS) and oxidative damage to cellular macromolecules are increased in the rodent hippocampus during epileptogenesis. However, the role of reactive nitrogen species (RNS) in epileptogenesis remains to be explored. The goal of this study was to determine the spatial and temporal occurrence of RNS i.e. nitric oxide levels in a rat model of temporal lobe epilepsy (TLE). Rats were injected with a single high dose of kainate and monitored by video for behavioral seizures for 6weeks to determine the onset and severity of chronic seizures. RNS and tissue/mitochondrial redox status (glutathione redox couple and coenzyme A:glutathione redox couple) were measured in the hippocampus at 8h, 24h, 48h, 1wk, 3wk and 6wk following kainate to assess the level of reactive species in subcellular compartments. We observed a biphasic increase in RNS levels with a return to control values at the 48h time point. However, both tissue and mitochondrial redox status showed permanent and significant decreases during the entire time course of epilepsy development. 3 nitrotyrosine (3NT) protein adducts were found to gradually increase throughout epileptogenesis, conceivably as a result of the local environment under oxidative and nitrosative stress. Colocalization of 3NT immunostaining with neuron- or astrocyte-specific markers revealed neuron-specific localization of 3NT in hippocampal principal neurons. Persistent and concurrent glutathione oxidation and nitrosative stress occur during epileptogenesis suggesting a favorable environment for posttranslational modifications.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Animales , Astrocitos/metabolismo , Coenzima A/metabolismo , Epilepsia del Lóbulo Temporal/complicaciones , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Ácido Kaínico , Masculino , Mitocondrias/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Convulsiones/etiología , Convulsiones/metabolismo , Índice de Severidad de la Enfermedad , Factores de Tiempo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA