Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Aquac Nutr ; 2023: 6925320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860976

RESUMEN

The optimal supplementation of lipid nutrients in the diet showed crucial physiological functions in gonadal development and maturation in adult female aquatic animals. Four isonitrogenous and isolipidic diets with no extra lecithin supplementation (control), 2% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) supplementation were formulated for Cherax quadricarinatus (72.32 ± 3.58 g). Ovary development and physiological characteristics of crayfish were evaluated after a 10-week feeding trial. The results indicated that SL, EL, or KO supplementation all significantly increased the gonadosomatic index, especially in the KO group. Crayfish fed the diet with SL showed the highest hepatosomatic index compared with those fed the other experimental diets. KO was more efficient than SL and EL in promoting triacylglycerol and cholesterol deposition in the ovary and hepatopancreas but also showed the lowest concentration of low-density lipoprotein cholesterol in the serum. KO significantly increased yolk granule deposition and accelerated oocyte maturation than other experimental groups. Furthermore, dietary phospholipids significantly enhanced the gonad-stimulating hormone concentration in the ovary and reduced the secretion of gonad-inhibiting hormones in the eyestalk. KO supplementation also significantly improved organic antioxidant capacity. From the ovarian lipidomics results, phosphatidylcholine and phosphatidylethanolamine are two main glycerophospholipids that respond to different dietary phospholipids. Polyunsaturated fatty acids (especially C18:2n-6, C18:3n-3, C20:4n-6, C20:5n-3, and C22:6n-3) were pivotal participants during ovarian development of crayfish regardless of lipid type. Combined with the ovarian transcriptome, the best positive function of KO was due to activated steroid hormone biosynthesis, sphingolipid signaling, retinol metabolism, lipolysis, starch and sucrose metabolism, vitamin digestion and absorption, and pancreatic secretion. As a consequence, dietary supplementation with SL, EL, or KO all improved the ovarian development quality of C. quadricarinatus, especially KO, which was the optimum choice for promoting ovary development in adult female C. quadricarinatus.

2.
Biochem Biophys Res Commun ; 492(2): 262-268, 2017 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-28830813

RESUMEN

BACKGROUND: Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection.


Asunto(s)
Antioxidantes/uso terapéutico , Autofagia/efectos de los fármacos , Cardiotónicos/uso terapéutico , Flavonas/uso terapéutico , Corazón/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Animales , Línea Celular , Glucosa/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA