Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Ophthalmol ; 23(1): 492, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38044438

RESUMEN

OBJECTIVE: To analyse the efficacy of the therapeutic use of low-level laser therapy (LLLT) on the tissue repair process of allogeneic scleral grafts in patients with contracted sockets by analysing the speed of graft vascularisation and fornice depth of contraction percentage. METHODS: A retrospective chart review was performed from April 2015 to April 2021 including 39patients with socket contraction. Allogeneic scleral grafts were used to repair the sockets in all patients. They were randomly enrolled into two groups. The laser group included 18 patients treated with LLLT after the surgery, whereas the control group included 21 patients without LLLT after the surgery who healed naturally. The LLLT equipment used in the research had a wavelength of 650 nm, 10 mW power, and 3.8 J/cm2 dosimetry, and the procedure was performed once daily for 5 min over 7 days, beginning 1 week postoperatively. All patients were followed up over 6 months to examine the changes in the size of the area of the non-vascularised graft and upper and inferior fornice depth. RESULTS: The laser group presented a significantly increased speed of conjunctival vascularisation compared with the control group (P = 0.003). The fornice depth of contraction percentage was more apparent in the control group than that in the laser group (P = 0.000). CONCLUSION: LLLT accelerates conjunctival vascularisation, stimulates conjunctival incision healing within a short period, shortens the tissue repair process, reduces the local inflammatory response, and causes no significant shrinkage of the conjunctival sac.


Asunto(s)
Terapia por Luz de Baja Intensidad , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Terapia por Luz de Baja Intensidad/métodos , Estudios Retrospectivos
2.
Biomed Res Int ; 2021: 8915867, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33575355

RESUMEN

Orthokeratology (OK) is widely used to slow the progression of myopia. Low-level laser therapy (LLLT) provides sufficient low energy to change the cellular function. This research is aimed at verifying the hypothesis that LLLT treatment could control myopia progression and comparing the abilities of OK lenses and LLLT to control the refractive error of myopia. Eighty-one children (81 eyes) who wore OK lenses, 74 children (74 eyes) who underwent LLLT treatment, and 74 children (74 eyes) who wore single-vision distance spectacles for 6 months were included. Changes in axial length (AL) were 0.23 ± 0.06 mm for children wearing spectacles, 0.06 ± 0.15 mm for children wearing OK lens, and -0.06 ± 0.15 mm for children treated with LLLT for 6 months. Changes in subfoveal choroidal thickness (SFChT) observed at the 6-month examination were -16.84 ± 7.85 µm, 14.98 ± 22.50 µm, and 35.30 ± 31.75 µm for the control group, OK group, and LLLT group, respectively. Increases in AL at 1 month and 6 months were significantly associated with age at LLLT treatment. Changes in AL were significantly correlated with the baseline spherical equivalent refraction (SER) and baseline AL in the OK and LLLT groups. Increases in SFChT at 1 month and 6 months were positively associated with age at enrolment for children wearing OK lens. At 6 months, axial elongation had decelerated in OK lens-wearers and LLLT-treated children. Slightly better myopia control was observed with LLLT treatment than with overnight OK lens-wearing. Evaluations of age, SER, and AL can enhance screening for high-risk myopia, improve the myopia prognosis, and help determine suitable control methods yielding the most benefits.


Asunto(s)
Terapia por Luz de Baja Intensidad , Miopía/terapia , Procedimientos de Ortoqueratología , Longitud Axial del Ojo , Niño , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Miopía/patología , Refracción Ocular , Resultado del Tratamiento
3.
Microvasc Res ; 129: 103959, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31734375

RESUMEN

Low-level laser therapy (LLLT) has been recognized as a light therapy that may be used for tissue regeneration, inflammation reduction, and pain relief. We intended to evaluate the effects of LLLT on the proliferation, migration, and tube formation of HUVECs as well as their related mechanisms. HUVECs were exposed to laser irradiation under different laser parameters (irradiation dose, interval and power intensity) in order to choose the optimal parameters, which were determined by the increase in proliferation of HUVECs as follows: irradiation dose of 4.0 J/m2, interval time of 12 h and 6 times in total. The HUVEC proliferation, migration, and tube formation, and levels of angiogenesis-related genes (HIF-1α, eNOS and VEGFA) were examined following LLLT. As suggested by the obtained data, LLLT (1.0, 2.0 and 4.0 J/m2) increased the HUVEC proliferation, migration, and tube formation in dose-and time-dependent manner, accompanied with increases in the levels of HIF-1α, eNOS, and VEGFA. Furthermore, the regulatory mechanism regarding the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was explored, phosphorylation levels of PI3K and Akt proteins were assessed by Western blot assay, which showed the enhancement of phosphorylation of PI3K, Akt, and mTOR by LLLT. The inhibitor for the PI3K/Akt axis was used to verify the involvement of PI3K/Akt signaling pathway. The obtained results suggested that the inhibition of the PI3K/Akt signaling pathway attenuated the effects of LLLT on proliferation, migration, and angiogenesis of HUVECs. In conclusion, LLLT promotes the proliferation, migration, and angiogenesis of HUVECs via activation of the PI3K/Akt signaling pathway.


Asunto(s)
Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Terapia por Luz de Baja Intensidad , Neovascularización Fisiológica/efectos de la radiación , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Activación Enzimática , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Zhonghua Zheng Xing Wai Ke Za Zhi ; 20(3): 177-9, 2004 May.
Artículo en Chino | MEDLINE | ID: mdl-15449614

RESUMEN

OBJECTIVE: To evaluate the efficacy of semiconductor low level laser irradiation for the treatment of postoperative exposure of hydroxyapatite orbital implants. METHODS: 22 cases with postoperative exposure of hydroxyapatite orbital implants were divided into three groups according to the size of implants exposure. The exposure wound in the 3 groups was irradated with semiconductor low level laser 5 min per day for 5-15 days. The follow-up period ranged from 2 to 24 months. RESULTS: In the group with less then 3 mm of exposure, the wound healed in 1 week after 5-10 days irradiation; in the group with implant exposure of 4-7 mm, the would healed in 1-2 weeks after 10-15 days irradiation; in the group with implant exposure of 8-10 mm, the would healed in 2-3 weeks after 10-15 days irradiation. Compared with the treatments of drugs and/or surgical repair, which was used for another 20 cases of exposure of hydroxyapatite orbital implants, semiconductor low level laser increased healing rate obviously in the groups with implant exposure of 4-7 mm and 8-10 mm (P = 0.019, 0.018). CONCLUSION: Semiconductor low level laser has better effects than drugs and/or surgical repair for exposure of hydroxyapatite orbital implants.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Implantes Orbitales/efectos adversos , Complicaciones Posoperatorias/radioterapia , Adolescente , Adulto , Anciano , Niño , Durapatita/uso terapéutico , Ojo/patología , Ojo/efectos de la radiación , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Semiconductores , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA