Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(3): 188-197, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38123940

RESUMEN

Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 µM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.


Asunto(s)
Neoplasias de la Mama , Citocromo P-450 CYP1A2 , Furanos , Fenantrenos , Quinonas , Humanos , Femenino , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulación del Acoplamiento Molecular , Cinética , Citocromo P-450 CYP1B1/metabolismo , Estradiol/farmacología , Estradiol/metabolismo
2.
Phytomedicine ; 114: 154778, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36996529

RESUMEN

BACKGROUND: Cortex Dictamni (CD) has been associated with an increased risk of liver injury, which may be attributable to the metabolic activation of its furan-containing components (FCC). However, the hepatotoxic potencies of these FCCs and the mechanisms behind the differences in their toxicity intensity remain unknown. METHODS: The constituents of CD extract were determined by LC-MS/MS. Potentially toxic FCCs were screened by a previously published method. Hepatotoxicity of potentially toxic FCCs was evaluated in cultured mouse primary hepatocytes and mice. The ability to deplete hepatic glutathione (GSH), along with the formation of the corresponding GSH conjugates, resulting from the metabolic activation was determined ex vivo in mice. Intrinsic clearance rates (CLint,Vmax/Km) were assessed by a microsome-bases assay. RESULTS: A total of 18 FCCs were detected in CD extract. Among them, four FCCs, including rutaevin (RUT), limonin (LIM), obacunone (OBA) and fraxinellone (FRA) were found to be bioactivated in microsomal incubations. Only FRA displayed significant hepatotoxicity in vitro and in vivo. Similarly, FRA caused GSH depletion and GSH conjugation the most in vivo. The order of CLint for the four FCCs was FRA>>OBA>LIM>RUT. CONCLUSION: FRA is the major toxic FCC component of hepatotoxic CD extract. The hepatotoxicity of FCCs is closely related to the efficiency of their metabolic activation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Espectrometría de Masas en Tándem , Ratones , Animales , Activación Metabólica , Cromatografía Liquida , Furanos , Extractos Vegetales , Glutatión/metabolismo
3.
Toxicol Lett ; 379: 20-34, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36905973

RESUMEN

Columbin (CLB) is the most abundant (>1.0%) furan-containing diterpenoid lactone in herbal medicine Tinospora sagittate (Oliv.) Gagnep. The furano-terpenoid was found to be hepatotoxic, but the exact mechanisms remain unknown. The present study demonstrated that administration of CLB at 50 mg/kg induced hepatotoxicity, DNA damage and up-regulation of PARP-1 in vivo. Exposure to CLB (10 µM) induced GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1 and cell death in cultured mouse primary hepatocytes in vitro. Co-treatment of mouse primary hepatocytes with ketoconazole (10 µM) or glutathione ethyl ester (200 µM) attenuated the GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1, and cell death induced by CLB, while co-exposure to L-buthionine sulfoximine (BSO, 1000 µM) intensified such adverse effects resulting from CLB exposure. These results suggest that the metabolic activation of CLB by CYP3A resulted in the depletion of GSH and increase of ROS formation. The resultant over-production of ROS subsequently disrupted the DNA integrity and up-regulated the expression of PARP-1 in response to DNA damage, and ROS-induced DNA damage was involved in the hepatotoxicity of CLB.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diterpenos , Animales , Ratones , Butionina Sulfoximina/farmacología , Daño del ADN , Glutatión/metabolismo , Lactonas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA