Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genomics Proteomics Bioinformatics ; 21(3): 455-469, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36775057

RESUMEN

Cyclocarya paliurus is a relict plant species that survived the last glacial period and shows a population expansion recently. Its leaves have been traditionally used to treat obesity and diabetes with the well-known active ingredient cyclocaric acid B. Here, we presented three C. paliurus genomes from two diploids with different flower morphs and one haplotype-resolved tetraploid assembly. Comparative genomic analysis revealed two rounds of recent whole-genome duplication events and identified 691 genes with dosage effects that likely contribute to adaptive evolution through enhanced photosynthesis and increased accumulation of triterpenoids. Resequencing analysis of 45 C. paliurus individuals uncovered two bottlenecks, consistent with the known events of environmental changes, and many selectively swept genes involved in critical biological functions, including plant defense and secondary metabolite biosynthesis. We also proposed the biosynthesis pathway of cyclocaric acid B based on multi-omics data and identified key genes, in particular gibberellin-related genes, associated with the heterodichogamy in C. paliurus species. Our study sheds light on evolutionary history of C. paliurus and provides genomic resources to study the medicinal herbs.


Asunto(s)
Duplicación de Gen , Hojas de la Planta , Humanos , Hojas de la Planta/metabolismo
2.
Plant J ; 112(5): 1194-1211, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36219505

RESUMEN

Heterosis is extensively used to improve crop productivity, yet its allelic and chromatin regulation remains unclear. Based on our resolved genomes of the maternal TGY and paternal HD, we analyzed the contribution of allele-specific expression (ASE) and chromatin accessibility of JGY and HGY, the artificial hybrids of oolong tea with the largest cultivated area in China. The ASE genes (ASEGs) of tea hybrids with maternal-biased were mainly related to the energy and terpenoid metabolism pathways, whereas the ASEGs with paternal-biased tend to be enriched in glutathione metabolism, and these parental bias of hybrids may coordinate and lead to the acquisition of heterosis in more biological pathways. ATAC-seq results showed that hybrids have significantly higher accessible chromatin regions (ACRs) compared with their parents, which may confer broader and stronger transcriptional activity of genes in hybrids. The number of ACRs with significantly increased accessibility in hybrids was much greater than decreased, and the associated alleles were also affected by differential ACRs across different parents, suggesting enhanced positive chromatin regulation and potential genetic effects in hybrids. Core ASEGs of terpene and purine alkaloid metabolism pathways with significant positive heterosis have greater chromatin accessibility in hybrids, and were potentially regulated by several members of the MYB, DOF and TRB families. The binding motif of CsMYB85 in the promoter ACR of the rate-limiting enzyme CsDXS was verified by DAP-seq. These results suggest that higher numbers and more accessible ACRs in hybrids contribute to the regulation of ASEGs, thereby affecting the formation of heterotic metabolites.


Asunto(s)
Camellia sinensis , Vigor Híbrido , Vigor Híbrido/genética , Alelos , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Perfilación de la Expresión Génica , Té/metabolismo
3.
Plant J ; 110(3): 881-898, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306701

RESUMEN

The section Oleifera (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. Oleifera using diploid wild Camellia lanceoleosa with a final size of 3.00 Gb and an N50 scaffold size of 186.43 Mb. Repetitive sequences accounted for 80.63% and were distributed unevenly across the genome. Camellia lanceoleosa underwent a whole-genome duplication event approximately 65 million years ago (65 Mya), prior to the divergence of C. lanceoleosa and Camellia sinensis (approx. 6-7 Mya). Syntenic comparisons of these two species elucidated the genomic rearrangement, appearing to be driven in part by the activity of transposable elements. The expanded and positively selected genes in C. lanceoleosa were significantly enriched in oil biosynthesis, and the expansion of homomeric acetyl-coenzyme A carboxylase (ACCase) genes and the seed-biased expression of genes encoding heteromeric ACCase, diacylglycerol acyltransferase, glyceraldehyde-3-phosphate dehydrogenase and stearoyl-ACP desaturase could be of primary importance for the high oil and oleic acid content found in C. lanceoleosa. Theanine and catechins were present in the leaves of C. lanceoleosa. However, caffeine can not be dectected in the leaves but was abundant in the seeds and roots. The functional and transcriptional divergence of genes encoding SAM-dependent N-methyltransferases may be associated with caffeine accumulation and distribution. Gene expression profiles, structural composition and chromosomal location suggest that the late-acting self-incompatibility of C. lanceoleosa is likely to have favoured a novel mechanism co-occurring with gametophytic self-incompatibility. This study provides valuable resources for quantitative and qualitative improvements and genome assembly of polyploid plants in sect. Oleifera.


Asunto(s)
Camellia sinensis , Camellia , Cafeína/metabolismo , Camellia/genética , Camellia/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromosomas , Evolución Molecular
4.
BMC Genomics ; 23(1): 8, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34983382

RESUMEN

BACKGROUND: The pistil is an essential part of flowers that functions in the differentiation of the sexes and reproduction in plants. The stigma on the pistil can accept pollen to allow fertilization and seed development. Papaya (Carica papaya L.) is a dioecious plant, where female flowers exhibit normal pistil, while the male flowers exhibit aborted pistil at a late stage of pistil development. RESULTS: The developmental stages of papaya pistil were analyzed after first dividing it into slices representing the primordium stage 1 (S1), the pre-meiotic stages S2, post-meiotic stage S3, and the mitotic stage S4. The SS scoring algorithm analysis of genes preferentially expressed at different stages revealed differentially expressed genes between male and female flowers. A transcription factor regulatory network for each stage based on the genes that are differentially expressed between male and female flowers was constructed. Some transcription factors related to pistil development were revealed based on the analysis of regulatory networks such as CpAGL11, CpHEC2, and CpSUPL. Based on the specific expression of genes, constructed a gene regulatory subnetwork with CpAGL11-CpSUPL-CpHEC2 functioning as the core. Analysis of the functionally enriched terms in this network reveals several differentially expressed genes related to auxin/ brassinosteroid signal transduction in the plant hormone signal transduction pathway. At the same time, significant differences in the expression of auxin and brassinosteroid synthesis-related genes between male and female flowers at different developmental stages were detected. CONCLUSIONS: The pistil abortion of papaya might be caused by the lack of expression or decreased expression of some transcription factors and hormone-related genes, affecting hormone signal transduction or hormone biosynthesis. Analysis of aborted and normally developing pistil in papaya provided new insights into the molecular mechanism of pistil development and sex differentiation in dioecious papaya.


Asunto(s)
Carica , Carica/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Polen
5.
Nat Genet ; 53(8): 1250-1259, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267370

RESUMEN

Tea is an important global beverage crop and is largely clonally propagated. Despite previous studies on the species, its genetic and evolutionary history deserves further research. Here, we present a haplotype-resolved assembly of an Oolong tea cultivar, Tieguanyin. Analysis of allele-specific expression suggests a potential mechanism in response to mutation load during long-term clonal propagation. Population genomic analysis using 190 Camellia accessions uncovered independent evolutionary histories and parallel domestication in two widely cultivated varieties, var. sinensis and var. assamica. It also revealed extensive intra- and interspecific introgressions contributing to genetic diversity in modern cultivars. Strong signatures of selection were associated with biosynthetic and metabolic pathways that contribute to flavor characteristics as well as genes likely involved in the Green Revolution in the tea industry. Our results offer genetic and molecular insights into the evolutionary history of Camellia sinensis and provide genomic resources to further facilitate gene editing to enhance desirable traits in tea crops.


Asunto(s)
Camellia sinensis/genética , Genoma de Planta , Haplotipos , Proteínas de Plantas/genética , Alelos , Evolución Biológica , Camellia sinensis/metabolismo , Productos Agrícolas/genética , Domesticación , Regulación de la Expresión Génica de las Plantas , Introgresión Genética , Variación Genética , Genética de Población , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple
6.
Nat Genet ; 51(10): 1549-1558, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31570895

RESUMEN

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


Asunto(s)
Ananas/genética , Productos Agrícolas/genética , Domesticación , Genoma de Planta , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Carácter Cuantitativo Heredable , Ananas/crecimiento & desarrollo , Bromelaínas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Dinámica Poblacional , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA