Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neural Eng ; 14(4): 045001, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28514229

RESUMEN

OBJECTIVE: Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. APPROACH: We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. MAIN RESULTS: Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. SIGNIFICANCE: 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.


Asunto(s)
Diseño de Equipo/instrumentación , Miniaturización/instrumentación , Diseño de Software , Tecnología Inalámbrica/instrumentación , Estimulación Acústica/métodos , Animales , Diseño de Equipo/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Miniaturización/métodos , Neuronas/fisiología , Pájaros Cantores
2.
PLoS Biol ; 13(6): e1002158, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26039895

RESUMEN

Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From "time cells" in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia-projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song.


Asunto(s)
Pinzones/fisiología , Corteza Motora/fisiología , Vocalización Animal/fisiología , Animales , Masculino , Corteza Motora/anatomía & histología , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA