Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroendocrinol ; 31(2): e12681, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30585662

RESUMEN

Both systemic and local production contribute to the concentration of steroids measured in the brain. This idea was originally based on rodent studies and was later extended to other species, including humans and birds. In quail, a widely used model in behavioural neuroendocrinology, it was demonstrated that all enzymes needed to produce sex steroids from cholesterol are expressed and active in the brain, although the actual concentrations of steroids produced were never investigated. We carried out a steroid profiling in multiple brain regions and serum of sexually mature male and female quail by gas chromatography coupled with mass spectrometry. The concentrations of some steroids (eg, corticosterone, progesterone and testosterone) were in equilibrium between the brain and periphery, whereas other steroids (eg, pregnenolone (PREG), 5α/ß-dihydroprogesterone and oestrogens) were more concentrated in the brain. In the brain regions investigated, PREG sulphate, progesterone and oestrogen concentrations were higher in the hypothalamus-preoptic area. Progesterone and its metabolites were more concentrated in the female than the male brain, whereas testosterone, its metabolites and dehydroepiandrosterone were more concentrated in males, suggesting that sex steroids present in quail brain mainly depend on their specific steroidogenic pathways in the ovaries and testes. However, the results of castration experiments suggested that sex steroids could also be produced in the brain independently of the peripheral source. Treatment with testosterone or oestradiol restored the concentrations of most androgens or oestrogens, respectively, although penetration of oestradiol in the brain appeared to be more limited. These studies illustrate the complex interaction between local brain synthesis and the supply from the periphery for the steroids present in the brain that are either directly active or represent the substrate of centrally located enzymes.


Asunto(s)
Encéfalo/metabolismo , Codorniz/fisiología , Caracteres Sexuales , Esteroides/sangre , Esteroides/metabolismo , 20-alfa-Dihidroprogesterona/sangre , 20-alfa-Dihidroprogesterona/metabolismo , 5-alfa-Dihidroprogesterona/sangre , 5-alfa-Dihidroprogesterona/metabolismo , Animales , Castración , Corticosterona/sangre , Corticosterona/metabolismo , Estrógenos/sangre , Estrógenos/metabolismo , Femenino , Hipotálamo/metabolismo , Masculino , Pregnenolona/sangre , Pregnenolona/metabolismo , Área Preóptica/metabolismo , Testosterona/sangre , Testosterona/metabolismo
2.
J Clin Endocrinol Metab ; 87(11): 5138-43, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12414884

RESUMEN

Some neurosteroids have been shown to display beneficial effects on neuroprotection in rodents. To investigate the physiopathological significance of neurosteroids in Alzheimer's disease (AD), we compared the concentrations of pregnenolone, pregnenolone sulfate (PREGS), dehydroepiandrosterone, dehydroepiandrosterone sulfate (DHEAS), progesterone, and allopregnanolone, measured by gas chromatography-mass spectrometry, in individual brain regions of AD patients and aged nondemented controls, including hippocampus, amygdala, frontal cortex, striatum, hypothalamus, and cerebellum. A general trend toward decreased levels of all steroids was observed in all AD patients' brain regions compared with controls: PREGS and DHEAS were significantly lower in the striatum and cerebellum, and DHEAS was also significantly reduced in the hypothalamus. A significant negative correlation was found between the levels of cortical beta-amyloid peptides and those of PREGS in the striatum and cerebellum and between the levels of phosphorylated tau proteins and DHEAS in the hypothalamus. This study provides reference values for steroid concentrations determined by gas chromatography-mass spectrometry in various regions of the aged human brain. High levels of key proteins implicated in the formation of plaques and neurofibrillary tangles were correlated with decreased brain levels of PREGS and DHEAS, suggesting a possible neuroprotective role of these neurosteroids in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Química Encefálica , Esteroides/análisis , Anciano , Anciano de 80 o más Años , Envejecimiento , Amígdala del Cerebelo/química , Péptidos beta-Amiloides/análisis , Cerebelo/química , Cuerpo Estriado/química , Sulfato de Deshidroepiandrosterona/análisis , Femenino , Lóbulo Frontal/química , Cromatografía de Gases y Espectrometría de Masas , Hipocampo/química , Humanos , Hipotálamo/química , Masculino , Pregnanolona/análisis , Pregnenolona/análisis , Progesterona/análisis , Estructura Secundaria de Proteína , Proteínas tau/análisis , Proteínas tau/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA