Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Immunol ; 13: 922654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958557

RESUMEN

Background: Obesity is associated with enhanced lipid accumulation and the expansion of adipose tissue accompanied by hypoxia and inflammatory signalling. Investigation in human subcutaneous white adipose tissue (scWAT) in people living with obesity in which metabolic complications such as insulin resistance are yet to manifest is limited, and the mechanisms by which these processes are dysregulated are not well elucidated. Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have been shown to modulate the expression of genes associated with lipid accumulation and collagen deposition and reduce the number of inflammatory macrophages in adipose tissue from individuals with insulin resistance. Therefore, these lipids may have positive actions on obesity associated scWAT hypertrophy and inflammation. Methods: To evaluate obesity-associated tissue remodelling and responses to LC n-3 PUFAs, abdominal scWAT biopsies were collected from normal weight individuals and those living with obesity prior to and following 12-week intervention with marine LC n-3 PUFAs (1.1 g EPA + 0.8 g DHA daily). RNA sequencing, qRT-PCR, and histochemical staining were used to assess remodelling- and inflammatory-associated gene expression, tissue morphology and macrophage infiltration. Results: Obesity was associated with scWAT hypertrophy (P < 0.001), hypoxia, remodelling, and inflammatory macrophage infiltration (P = 0.023). Furthermore, we highlight the novel dysregulation of Wnt signalling in scWAT in non-insulin resistant obesity. LC n-3 PUFAs beneficially modulated the scWAT environment through downregulating the expression of genes associated with inflammatory and remodelling pathways (P <0.001), but there were altered outcomes in individuals living with obesity in comparison to normal weight individuals. Conclusion: Our data identify dysregulation of Wnt signalling, hypoxia, and hypertrophy, and enhanced macrophage infiltration in scWAT in non-insulin resistant obesity. LC n-3 PUFAs modulate some of these processes, especially in normal weight individuals which may be preventative and limit the development of restrictive and inflammatory scWAT in the development of obesity. We conclude that a higher dose or longer duration of LC n-3 PUFA intervention may be needed to reduce obesity-associated scWAT inflammation and promote tissue homeostasis. Clinical Trial Registration: www.isrctn.com, identifier ISRCTN96712688.


Asunto(s)
Ácidos Grasos Omega-3 , Resistencia a la Insulina , Tejido Adiposo Blanco/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Hipertrofia/metabolismo , Hipoxia/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo
2.
EBioMedicine ; 77: 103909, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35247847

RESUMEN

BACKGROUND: Obesity is associated with enhanced inflammation. However, investigation in human subcutaneous white adipose tissue (scWAT) is limited and the mechanisms by which inflammation occurs have not been well elucidated. Marine long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and may reduce scWAT inflammation. METHODS: Subcutaneous white adipose tissue (scWAT) biopsies were collected from individuals living with obesity (n=45) and normal weight individuals (n=39) prior to and following a 12-week intervention with either 3 g/day of a fish oil concentrate (providing 1.1 g eicosapentaenoic acid (EPA) + 0.8 g docosahexaenoic acid (DHA)) or 3 g/day of corn oil. ScWAT fatty acid, oxylipin, and transcriptome profiles were assessed by gas chromatography, ultra-pure liquid chromatography tandem mass spectrometry, RNA sequencing and qRT-PCR, respectively. FINDINGS: Obesity was associated with greater scWAT inflammation demonstrated by lower concentrations of specialised pro-resolving mediators (SPMs) and hydroxy-DHA metabolites and an altered transcriptome with differential expression of genes involved in LC n-3 PUFA activation, oxylipin synthesis, inflammation, and immune response. Intervention with LC n-3 PUFAs increased their respective metabolites including the SPM precursor 14-hydroxy-DHA in normal weight individuals and decreased arachidonic acid derived metabolites and expression of genes involved in immune and inflammatory response with a greater effect in normal weight individuals. INTERPRETATION: Downregulated expression of genes responsible for fatty acid activation and metabolism may contribute to an inflammatory oxylipin profile and limit the effects of LC n-3 PUFAs in obesity. There may be a need for personalised LC n-3 PUFA supplementation based on obesity status. FUNDING: European Commission Seventh Framework Programme (Grant Number 244995) and Czech Academy of Sciences (Lumina quaeruntur LQ200111901).


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3 , Tejido Adiposo Blanco/metabolismo , Ácidos Docosahexaenoicos , Ácidos Grasos , Humanos , Inflamación/metabolismo , Obesidad/tratamiento farmacológico
3.
Front Immunol ; 12: 740749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675928

RESUMEN

Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes. CD3+ T cells were incubated for up to 48 h with or without concanavalin A in media containing a 18:2n-6:18:3n-3 (EFA) ratio of either 5:1 or 8:1 and [13C]18:3n-3 plus [d5]18:2n-6. Mitogen stimulation increased the amounts of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-6, 20:4n-6, 18:3n-3, and 20:5n-3 in T cells. Expression of the activation marker CD69 preceded increased FADS2 and FADS1 mRNA expression and increased amounts of [d5]20:2n-6 and [13C]20:3n-3 at 48 h. In addition, 22-carbon n-6 or n-3 LCPUFA synthesis was not detected, consistent with the absence of ELOVL2 expression. An EFA ratio of 8:1 reduced 18:3n-3 conversion and enhanced 20:2n-6 synthesis compared to a 5:1 ratio. Here, [d5]9- and [d5]-13-hydroxyoctadecadienoic (HODE) and [13C]9- and [13C]13-hydroxyoctadecatrienoic acids (HOTrE) were the major labelled oxylipins in culture supernatants; labelled oxylipins ≥20 carbons were not detected. An EFA ratio of 8:1 suppressed 9- and 13-HOTrE synthesis, but there was no significant effect on 9- and 13-HODE synthesis. These findings suggest that partitioning of newly assimilated EFA between LCPUFA synthesis and hydroxyoctadecaenoic acid may be a metabolic branch point in T-cell EFA metabolism that has implications for understanding the effects of dietary fats on T lymphocyte function.


Asunto(s)
Ácidos Grasos Esenciales/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Linoleico/metabolismo , Linfocitos T/metabolismo , Ácido alfa-Linolénico/metabolismo , Adolescente , Adulto , Células Cultivadas , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Metabolismo de los Lípidos , Activación de Linfocitos , Masculino , Adulto Joven
4.
Nutrients ; 13(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34578993

RESUMEN

Eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) are important for leukocyte function. This study investigated whether consuming transgenic Camelina sativa (tCSO) seed oil containing both 20:5n-3 and 22:6n-3 is as effective as fish oil (FO) for increasing the 20:5n-3 and 22:6n-3 content of leukocytes and altering mitogen-induced changes to the T cell transcriptome. Healthy adults (n = 31) consumed 450 mg/day of 20:5n-3 plus 22:6n-3 from either FO or tCSO for 8 weeks. Blood was collected before and after the intervention. 20:5n-3 and 22:6n-3 incorporation from tCSO into immune cell total lipids was comparable to FO. The relative expression of the transcriptomes of mitogen-stimulated versus unstimulated T lymphocytes in a subgroup of 16 women/test oil showed 4390 transcripts were differentially expressed at Baseline (59% up-regulated), 4769 (57% up-regulated) after FO and 3443 (38% up-regulated) after tCSO supplementation. The 20 most altered transcripts after supplementation differed between test oils. The most altered pathways were associated with cell proliferation and immune function. In conclusion, 20:5n-3 and 22:6n-3 incorporation into immune cells from tCSO was comparable to FO and can modify mitogen-induced changes in the T cell transcriptome, contingent on the lipid matrix of the oil.


Asunto(s)
Brassicaceae/química , Suplementos Dietéticos , Aceites de Pescado/farmacología , Aceites de Plantas/farmacología , Linfocitos T/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Adolescente , Adulto , Anciano , Complejo CD3 , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Adulto Joven
5.
Clin Sci (Lond) ; 135(1): 185-200, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33393630

RESUMEN

Obesity is believed to be associated with a dysregulated endocannabinoid system which may reflect enhanced inflammation. However, reports of this in human white adipose tissue (WAT) are limited and inconclusive. Marine long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and therefore may improve obesity-associated adipose tissue inflammation. Therefore, fatty acid (FA) concentrations, endocannabinoid concentrations, and gene expression were assessed in subcutaneous WAT (scWAT) biopsies from healthy normal weight individuals (BMI 18.5-25 kg/m2) and individuals living with metabolically healthy obesity (BMI 30-40 kg/m2) prior to and following a 12-week intervention with 3 g fish oil/day (1.1 g eicosapentaenoic acid (EPA) + 0.8 g DHA) or 3 g corn oil/day (placebo). WAT from individuals living with metabolically healthy obesity had higher n-6 PUFAs and EPA, higher concentrations of two endocannabinoids (anandamide (AEA) and eicosapentaenoyl ethanolamide (EPEA)), higher expression of phospholipase A2 Group IID (PLA2G2D) and phospholipase A2 Group IVA (PLA2G4A), and lower expression of CNR1. In response to fish oil intervention, WAT EPA increased to a similar extent in both BMI groups, and WAT DHA increased by a greater extent in normal weight individuals. WAT EPEA and docosahexaenoyl ethanolamide (DHEA) increased in normal weight individuals only and WAT 2-arachidonyl glycerol (2-AG) decreased in individuals living with metabolically healthy obesity only. Altered WAT fatty acid, endocannabinoid, and gene expression profiles in metabolically healthy obesity at baseline may be linked. WAT incorporates n-3 PUFAs when their intake is increased which affects the endocannabinoid system; however, effects appear greater in normal weight individuals than in those living with metabolically healthy obesity.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Endocannabinoides/metabolismo , Obesidad Metabólica Benigna/tratamiento farmacológico , Grasa Subcutánea/efectos de los fármacos , Adolescente , Adulto , Ácidos Araquidónicos/metabolismo , Método Doble Ciego , Combinación de Medicamentos , Inglaterra , Femenino , Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Obesidad Metabólica Benigna/diagnóstico , Obesidad Metabólica Benigna/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Grasa Subcutánea/metabolismo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
6.
Am J Clin Nutr ; 112(4): 1099-1113, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889533

RESUMEN

BACKGROUND: Maternal nutrition in pregnancy has been linked to offspring health in early and later life, with changes to DNA methylation (DNAm) proposed as a mediating mechanism. OBJECTIVE: We investigated intervention-associated DNAm changes in children whose mothers participated in 2 randomized controlled trials of micronutrient supplementation before and during pregnancy, as part of the EMPHASIS (Epigenetic Mechanisms linking Preconceptional nutrition and Health Assessed in India and sub-Saharan Africa) study (ISRCTN14266771). DESIGN: We conducted epigenome-wide association studies with blood samples from Indian (n = 698) and Gambian (n = 293) children using the Illumina EPIC array and a targeted study of selected loci not on the array. The Indian micronutrient intervention was food based, whereas the Gambian intervention was a micronutrient tablet. RESULTS: We identified 6 differentially methylated CpGs in Gambians [2.5-5.0% reduction in intervention group, all false discovery rate (FDR) <5%], the majority mapping to ESM1, which also represented a strong signal in regional analysis. One CpG passed FDR <5% in the Indian cohort, but overall effect sizes were small (<1%) and did not have the characteristics of a robust signature. We also found strong evidence for enrichment of metastable epialleles among subthreshold signals in the Gambian analysis. This supports the notion that multiple methylation loci are influenced by micronutrient supplementation in the early embryo. CONCLUSIONS: Maternal preconceptional and pregnancy micronutrient supplementation may alter DNAm in children measured at 7-9 y. Multiple factors, including differences between the nature of the intervention, participants, and settings, are likely to have contributed to the lack of replication in the Indian cohort. Potential links to phenotypic outcomes will be explored in the next stage of the EMPHASIS study.


Asunto(s)
Metilación de ADN , Fenómenos Fisiologicos Nutricionales Maternos , Micronutrientes/administración & dosificación , Adulto , Niño , Preescolar , Femenino , Interacción Gen-Ambiente , Humanos , Masculino , Proteínas de Neoplasias/genética , Embarazo , Proteoglicanos/genética , Sitios de Carácter Cuantitativo , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Br J Nutr ; 124(9): 922-930, 2020 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-32513312

RESUMEN

EPA and DHA are required for normal cell function and can also induce health benefits. Oily fish are the main source of EPA and DHA for human consumption. However, food choices and concerns about the sustainability of marine fish stocks limit the effectiveness of dietary recommendations for EPA + DHA intakes. Seed oils from transgenic plants that contain EPA + DHA are a potential alternative source of EPA and DHA. The present study investigated whether dietary supplementation with transgenic Camelina sativa seed oil (CSO) that contained EPA and DHA was as effective as fish oil (FO) in increasing EPA and DHA concentrations when consumed as a dietary supplement in a blinded crossover study. Healthy men and women (n 31; age 53 (range 20-74) years) were randomised to consume 450 mg/d EPA + DHA provided either as either CSO or FO for 8 weeks, followed by 6 weeks washout and then switched to consuming the other test oil. Fasting venous blood samples were collected at the start and end of each supplementation period. Consuming the test oils significantly (P < 0·05) increased EPA and DHA concentrations in plasma TAG, phosphatidylcholine and cholesteryl esters. There were no significant differences between test oils in the increments of EPA and DHA. There was no significant difference between test oils in the increase in the proportion of erythrocyte EPA + DHA (CSO, 12 %; P < 0·0001 and FO, 8 %; P = 0·02). Together, these findings show that consuming CSO is as effective as FO for increasing EPA and DHA concentrations in humans.


Asunto(s)
Brassicaceae/química , Suplementos Dietéticos , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Aceites de Plantas/farmacología , Adulto , Anciano , Estudios Cruzados , Eritrocitos/química , Femenino , Aceites de Pescado/farmacología , Humanos , Masculino , Persona de Mediana Edad , Plantas Modificadas Genéticamente/química , Semillas , Método Simple Ciego , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-32289503

RESUMEN

The mechanisms by which digested fat is absorbed and transported in the circulation are well documented. However, it is uncertain whether the molecular species composition of dietary fats influences the molecular species composition of meal-derived lipids in blood. This may be important because enzymes that remove meal-derived fatty acids from the circulation exhibit differential activities towards individual lipid molecular species. To determine the effect of consuming oils with different molecular compositions on the incorporation of 20:5n-3 and 22:6n-3 into plasma lipid molecular species. Men and women (18-30 years) consumed standardised meals containing 20:5n-5 and 22:6n-3 (total 450 mg) provided by an oil from transgenic Camelina sativa (CSO) or a blended fish oil (BFO) which differed in the composition of 20:5n-3 and 22:6n-3 - containing molecular species. Blood was collected during the subsequent 8 h. Samples were analysed by liquid chromatography-mass spectrometry. The molecular species composition of the test oils was distinct from the composition of plasma triacylglycerol (TG) or phosphatidylcholine (PC) molecular species at baseline and at 1.5 or 6 h after the meal. The rank order by concentration of both plasma PC and TG molecular species at baseline was maintained during the postprandial period. 20:5n-3 and 22:6n-3 were incorporated preferentially into plasma PC compared to plasma TG. Together these findings suggest that the composition of dietary lipids undergoes extensive rearrangement after absorption, such that plasma TG and PC maintain their molecular species composition, which may facilitate lipase activities in blood and/or influence lipoprotein structural stability and function.


Asunto(s)
Brassicaceae/química , Fosfatidilcolinas/sangre , Aceites de Plantas/análisis , Periodo Posprandial , Triglicéridos/sangre , Adolescente , Adulto , Femenino , Humanos , Masculino , Aceites de Plantas/administración & dosificación , Adulto Joven
9.
Lipids ; 54(11-12): 725-739, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31658496

RESUMEN

Adequate dietary supply of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) is required to maintain health and growth of Atlantic salmon (Salmo salar). However, salmon can also convert α-linolenic acid (18:3n-3) into eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) by sequential desaturation and elongation reactions, which can be modified by 20:5n-3 and 22:6n-3 intake. In mammals, dietary 20:5n-3 + 22:6n-3 intake can modify Fads2 expression (Δ6 desaturase) via altered DNA methylation of its promoter. Decreasing dietary fish oil (FO) has been shown to increase Δ5fad expression in salmon liver. However, it is not known whether this is associated with changes in the DNA methylation of genes involved in polyunsaturated fatty acid synthesis. To address this, we investigated whether changing the proportions of dietary FO and vegetable oil altered the DNA methylation of Δ6fad_b, Δ5fad, Elovl2, and Elovl5_b promoters in liver and muscle from Atlantic salmon and whether any changes were associated with mRNA expression. Higher dietary FO content increased the proportions of 20:5n-3 and 22:6n-3 and decreased Δ6fad_b mRNA expression in liver, but there was no effect on Δ5fad, Elovl2, and Elovl5_b expression. There were significant differences between liver and skeletal muscle in the methylation of individual CpG loci in all four genes studied. Methylation of individual Δ6fad_b CpG loci was negatively related to its expression and to proportions of 20:5n-3 and 22:6n-3 in the liver. These findings suggest variations in dietary FO can induce gene-, CpG locus-, and tissue-related changes in DNA methylation in salmon.


Asunto(s)
Ácidos Grasos Insaturados/biosíntesis , Aceites de Pescado/farmacología , Hígado/efectos de los fármacos , Músculos/efectos de los fármacos , Animales , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Suplementos Dietéticos , Ácidos Grasos Insaturados/química , Aceites de Pescado/administración & dosificación , Hígado/química , Hígado/metabolismo , Músculos/química , Músculos/metabolismo , Aceites de Plantas/administración & dosificación , Salmo salar
10.
Br J Nutr ; 121(11): 1235-1246, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975228

RESUMEN

EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18-30 years or 50-65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.


Asunto(s)
Camellia , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Aceites de Pescado/administración & dosificación , Aceites de Plantas/administración & dosificación , Adolescente , Adulto , Anciano , Colesterol/sangre , Estudios Cruzados , Método Doble Ciego , Ácidos Grasos no Esterificados/sangre , Femenino , Aceites de Pescado/química , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilcolinas/sangre , Aceites de Plantas/química , Plantas Modificadas Genéticamente/química , Periodo Posprandial/efectos de los fármacos , Semillas/química , Adulto Joven
11.
J Bone Miner Res ; 34(2): 231-240, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30321476

RESUMEN

We have previously demonstrated inverse associations between maternal 25(OH)-vitamin D status and perinatal DNA methylation at the retinoid-X-receptor-alpha (RXRA) locus and between RXRA methylation and offspring bone mass. In this study, we used an existing randomized trial to test the hypothesis that maternal gestational vitamin D supplementation would lead to reduced perinatal RXRA locus DNA methylation. The Maternal Vitamin D Osteoporosis Study (MAVIDOS) was a multicenter, double-blind, randomized, placebo-controlled trial of 1000 IU/day cholecalciferol or matched placebo from 14 weeks' gestation until delivery. Umbilical cord (fetal) tissue was collected at birth and frozen at -80°C (n = 453). Pyrosequencing was used to undertake DNA methylation analysis at 10 CpG sites within the RXRA locus (identified previously). T tests were used to assess differences between treatment groups in methylation at the three most representative CpG sites. Overall, methylation levels were significantly lower in the umbilical cord from offspring of cholecalciferol-supplemented mothers, reaching statistical significance at four CpG sites, represented by CpG5: mean difference in % methylation between the supplemented and placebo groups was -1.98% (95% CI, -3.65 to -0.32, p = 0.02). ENCODE (Encyclopedia of DNA Elements) evidence supports the functionality of this locus with strong DNase hypersensitivity and enhancer chromatin within biologically relevant cell types including osteoblasts. Enrichment of the enhancer-related H3K4me1 histone mark is also seen in this region, as are binding sites for a range of transcription factors with roles in cell proliferation, response to stress, and growth factors. Our findings are consistent with previous observational results and provide new evidence that maternal gestational supplementation with cholecalciferol leads to altered perinatal epigenetic marking, informing mechanistic understanding of early life mechanisms related to maternal vitamin D status, epigenetic marks, and bone development. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Asunto(s)
Islas de CpG , Metilación de ADN/efectos de los fármacos , Suplementos Dietéticos , Sitios Genéticos , Receptor alfa X Retinoide , Vitamina D/análogos & derivados , Adulto , Método Doble Ciego , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Vitamina D/administración & dosificación
12.
Epigenomics ; 10(1): 71-90, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29135286

RESUMEN

AIM: To investigate the effect of B12 and/or folic acid supplementation on genome-wide DNA methylation. METHODS: We performed Infinium HumanMethylation450 BeadChip (Zymo Research, CA, USA) assay in children supplemented with B12 and/or folic acid (n = 12 in each group) and investigated the functional mechanism of selected differentially methylated loci. RESULTS: We noted significant methylation changes postsupplementation in B12 (589 differentially methylated CpGs and 2892 regions) and B12 + folic acid (169 differentially methylated CpGs and 3241 regions) groups. Type 2 diabetes-associated genes TCF7L2 and FTO; and a miRNA, miR21 were further investigated in another B12-supplementation cohort. We also demonstrate that methylation influences miR21 expression and FTO, TCF7L2, CREBBP/CBP and SIRT1 are direct targets of miR21-3p. CONCLUSION: B12 supplementation influences regulation of several metabolically important Type 2 diabetes-associated genes through methylation of miR21. Hence, our study provides novel epigenetic explanation for the association between disordered one carbon metabolism and risk of adiposity, insulin resistance and diabetes and has translational potential.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Suplementos Dietéticos , MicroARNs/genética , Vitamina B 12/farmacología , Complejo Vitamínico B/farmacología , Niño , Epigenómica , Femenino , Humanos , Masculino
13.
BMC Nutr ; 32017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30820326

RESUMEN

BACKGROUND: Animal studies have shown that nutritional exposures during pregnancy can modify epigenetic marks regulating fetal development and susceptibility to later disease, providing a plausible mechanism to explain the developmental origins of health and disease. Human observational studies have shown that maternal peri-conceptional diet predicts DNA methylation in offspring. However, a causal pathway from maternal diet, through changes in DNA methylation, to later health outcomes has yet to be established. The EMPHASIS study (Epigenetic Mechanisms linking Pre-conceptional nutrition and Health Assessed in India and Sub-Saharan Africa, ISRCTN14266771) will investigate epigenetically mediated links between peri-conceptional nutrition and health-related outcomes in children whose mothers participated in two randomized controlled trials of micronutrient supplementation before and during pregnancy. METHODS: The original trials were the Mumbai Maternal Nutrition Project (MMNP, ISRCTN62811278) in which Indian women were offered a daily snack made from micronutrient-rich foods or low-micronutrient foods (controls), and the Peri-conceptional Multiple Micronutrient Supplementation Trial (PMMST, ISRCTN13687662) in rural Gambia, in which women were offered a daily multiple micronutrient (UNIMMAP) tablet or placebo. In the EMPHASIS study, DNA methylation will be analysed in the children of these women (~1,100 children aged 5-7 y in MMNP and 298 children aged 7-9 y in PMMST). Cohort-specific and cross-cohort effects will be explored. Differences in DNA methylation between allocation groups will be identified using the Illumina Infinium MethylationEPIC array, and by pyrosequencing top hits and selected candidate loci. Associations will be analysed between DNA methylation and health-related phenotypic outcomes, including size at birth, and children's post-natal growth, body composition, skeletal development, cardio-metabolic risk markers (blood pressure, serum lipids, plasma glucose and insulin) and cognitive function. Pathways analysis will be used to test for enrichment of nutrition-sensitive loci in biological pathways. Causal mechanisms for nutrition-methylation-phenotype associations will be explored using Mendelian Randomization. Associations between methylation unrelated to supplementation and phenotypes will also be analysed. CONCLUSION: The study will increase understanding of the epigenetic mechanisms underpinning the long-term impact of maternal nutrition on offspring health. It will potentially lead to better nutritional interventions for mothers preparing for pregnancy, and to identification of early life biomarkers of later disease risk.

14.
J Hepatol ; 63(6): 1476-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26272871

RESUMEN

BACKGROUND & AIMS: Genetic variation in both patatin-like phospholipase domain-containing protein-3 (PNPLA3) (I148M) and the transmembrane 6 superfamily member 2 protein (TM6SF2) (E167K) influences severity of liver disease, and serum triglyceride concentrations in non-alcoholic fatty liver disease (NAFLD), but whether either genotype influences the responses to treatments is uncertain. METHODS: One hundred three patients with NAFLD were randomised to omega-3 fatty acids (DHA+EPA) or placebo for 15-18months in a double blind placebo controlled trial. Erythrocyte enrichment with DHA and EPA was measured by gas chromatography. PNPLA3 and TM6SF2 genotypes were measured by PCR technologies. Multivariable linear regression and analysis of covariance were undertaken to test the effect of genotypes on omega-3 fatty acid enrichment, end of study liver fat percentage and serum triglyceride concentrations. All models were adjusted for baseline measurements of each respective outcome. RESULTS: Fifty-five men and 40 women (Genotypes PNPLA3 I148M, 148I/I=41, 148I/M=43, 148M/M=11; TM6SF2 E167K 167E/E=78, 167E/K+167K/K=17 participants) (mean ± SD age, 51 ± 11 years) completed the trial. Adjusting for baseline measurement, measured covariates and confounders, PNPLA3 148M/M variant was independently associated with percentage of DHA enrichment (B coefficient -1.02 (95% CI -1.97, -0.07), p=0.036) but not percentage of EPA enrichment (B coefficient -0.31 (95% CI -1.38, 0.75), p=0.56). This genotype was also independently associated with end of study liver fat percentage (B coefficient 9.5 (95% CI 2.53, 16.39), p=0.008), but not end of study triglyceride concentration (B coefficient -0.11 (95% CI -0.64, 0.42), p=0.68). CONCLUSIONS: PNPLA3 148M/M variant influences the changes in liver fat and DHA tissue enrichment during the trial but not the change in serum triglyceride concentration.


Asunto(s)
Ácidos Docosahexaenoicos/uso terapéutico , Ácido Eicosapentaenoico/uso terapéutico , Lipasa/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Anciano , Suplementos Dietéticos , Método Doble Ciego , Combinación de Medicamentos , Femenino , Variación Genética , Genotipo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido Simple , Triglicéridos/sangre
15.
Nutr Res ; 35(6): 532-44, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25960189

RESUMEN

Dietary supplementation with folic acid (FA) has been shown to induce opposing effects on cancer-related outcomes. The mechanism underlying such heterogeneity is unclear. We hypothesized that FA supplementation induces changes in breast cancer-associated (BRCA) genes 1 and 2 expression and function through altered epigenetic regulation in a cell type-dependent manner. We investigated the effect of treating normal and cancer cells with physiologically relevant FA concentrations on the mRNA and protein expression, capacity for DNA repair, and DNA methylation of BRCA1 and BRCA2. FA treatment induced dose-related increases in BRCA1 mRNA expression in HepG2, Huh-7D12, Hs578T, and JURKAT and in BRCA2 in HepG2, Hs578T, MCF7, and MDA-MB-157 cells. FA did not affect the corresponding normal cells or on any of the ovarian cell lines. Folic acid induced increased BRCA1 protein expression in Hs578T, but not HepG2 cells, whereas BRCA2 protein levels were undetectable. FA treatment did not alter DNA repair in liver-derived cells, whereas there were transient effects on breast-derived cells. There was no effect of FA treatment on BRCA1 or BRCA2 DNA methylation, although there was some variation in the methylation of specific CpG loci between some cell lines. Overall, these findings show that the effects of FA on BRCA-related outcomes differ between cells lines, but the biological consequences of induced changes in BRCA expression appear to be at most limited.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Metilación de ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Ácido Fólico/farmacología , Neoplasias/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Línea Celular Tumoral , Islas de CpG , Suplementos Dietéticos , Epigénesis Genética , Humanos , Neoplasias/genética , ARN Mensajero/metabolismo , Complejo Vitamínico B/farmacología
16.
PLoS One ; 9(10): e109896, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25329159

RESUMEN

BACKGROUND: Studies in animal models and in cultured cells have shown that fatty acids can induce alterations in the DNA methylation of specific genes. There have been no studies of the effects of fatty acid supplementation on the epigenetic regulation of genes in adult humans. METHODS AND RESULTS: We investigated the effect of supplementing renal patients with 4 g daily of either n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) or olive oil (OO) for 8 weeks on the methylation status of individual CpG loci in the 5' regulatory region of genes involved in PUFA biosynthesis in peripheral blood mononuclear cells from men and women (aged 53 to 63 years). OO and n-3 LCPUFA each altered (>10% difference in methylation) 2/22 fatty acid desaturase (FADS)-2 CpGs, while n-3 LCPUFA, but not OO, altered (>10%) 1/12 ELOVL5 CpGs in men. OO altered (>6%) 8/22 FADS2 CpGs and (>3%) 3/12 elongase (ELOVL)-5 CpGs, while n-3 LCPUFA altered (>5%) 3/22 FADS2 CpGs and 2/12 (>3%) ELOVL5 CpGs in women. FADS1 or ELOVL2 methylation was unchanged. The n-3 PUFA supplementation findings were replicated in blood DNA from healthy adults (aged 23 to 30 years). The methylation status of the altered CpGs in FADS2 and ELOVL5 was associated negatively with the level of their transcripts. CONCLUSIONS: These findings show that modest fatty acid supplementation can induce altered methylation of specific CpG loci in adult humans, contingent on the nature of the supplement and on sex. This has implications for understanding the effect of fatty acids on PUFA metabolism and cell function.


Asunto(s)
Acetiltransferasas/genética , Metilación de ADN , Suplementos Dietéticos , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/farmacología , Leucocitos Mononucleares/metabolismo , Aceites de Plantas/farmacología , Insuficiencia Renal Crónica/metabolismo , Acetiltransferasas/metabolismo , Adulto , Secuencia de Bases , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Aceite de Oliva , Aceites de Plantas/administración & dosificación , Insuficiencia Renal Crónica/genética
17.
Curr Opin Clin Nutr Metab Care ; 17(2): 156-61, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24322369

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to assess the findings of recent studies on the effects of fatty acids on epigenetic process and the role of epigenetics in regulating fatty acid metabolism. RECENT FINDINGS: The DNA methylation status of the Fads2 promoter was increased in the liver of the offspring of mice fed an α-linolenic acid-enriched diet during pregnancy. In rats, increasing total maternal fat intake during pregnancy and lactation induced persistent hypermethylation of the Fads2 promoter in the liver and aortae of their offspring. However, increased fish oil intake in adult rats induced transient, reversible hypermethylation of Fads2. High-fat feeding in rodents also altered the levels of histone methylation in placentae and in adipose tissue. Dietary docosahexaenoic acid supplementation in pregnant women induced marginal changes in global DNA methylation in cord blood leukocytes. A high fat diet altered the DNA methylation status of specific genes in skeletal muscle in young men. SUMMARY: There are emerging findings that support the suggestion that fatty acids, in particular polyunsaturated fatty acids, can modify the epigenome. However, there is a need for rigorous investigations that assess directly the effect epigenetic modifications induced by fatty acids on gene function and metabolism.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Dieta , Grasas de la Dieta/farmacología , Epigénesis Genética , Ácidos Grasos Insaturados/genética , Animales , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Femenino , Humanos , Masculino , Embarazo
18.
Br J Nutr ; 108(11): 1924-30, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23046900

RESUMEN

Maternal folic acid (FA) supplementation is well recognised to protect against neural tube defects. Folate is a critical cofactor in one-carbon metabolism involved in the epigenetic regulation of transcription that underpins development. Thus, it is possible that maternal FA supplementation may have additional, unforeseen persistent effects in the offspring. This is supported by the modification by maternal supplementation with one-carbon donors and FA of the epigenetic regulation of offspring phenotype in mutant mice. The present article reviews studies in human subjects and experimental animals of the effect of maternal FA intake and phenotypic outcomes in the offspring. Maternal FA intake was associated with a short-term increased incidence of allergy-related respiratory impairment in children and multigenerational respiratory impairment in rats. Higher maternal folate status during pregnancy was associated positively with insulin resistance in 6-year-olds. In rats, maternal FA supplementation modified hepatic metabolism and vascular function through altered transcription, in some cases underpinned by epigenetic changes. FA supplementation in pregnant rats increased mammary tumorigenesis, but decreased colorectal cancer in the offspring. Maternal FA supplementation decreased a range of congenital cardiac defects in children. These findings support the view that maternal FA supplementation induces persistent changes in a number of phenotypic outcomes in the offspring. However, the number of studies is limited and insufficient to indicate a need to change current recommendations for FA intake in pregnancy. Nevertheless, such effects should be investigated thoroughly in order to support firm conclusions about the risk of unanticipated long-term negative effects of maternal FA supplementation in humans.


Asunto(s)
Suplementos Dietéticos/efectos adversos , Ácido Fólico/efectos adversos , Fenómenos Fisiologicos Nutricionales Maternos , Adulto , Animales , Niño , Femenino , Ácido Fólico/administración & dosificación , Ácido Fólico/uso terapéutico , Humanos , Masculino , Embarazo
19.
PLoS One ; 7(4): e34492, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509311

RESUMEN

Nutrition during development affects risk of future cardiovascular disease. Relatively little is known about whether the amount and type of fat in the maternal diet affect vascular function in the offspring. To investigate this, pregnant and lactating rats were fed either 7%(w/w) or 21%(w/w) fat enriched in either 18:2n-6, trans fatty acids, saturated fatty acids, or fish oil. Their offspring were fed 4%(w/w) soybean oil from weaning until day 77. Type and amount of maternal dietary fat altered acetylcholine (ACh)-mediated vaso-relaxation in offspring aortae and mesenteric arteries, contingent on sex. Amount, but not type, of maternal dietary fat altered phenylephrine (Pe)-induced vasoconstriction in these arteries. Maternal 21% fat diet decreased 20:4n-6 concentration in offspring aortae. We investigated the role of Δ6 and Δ5 desaturases, showing that their inhibition in aortae and mesenteric arteries reduced vasoconstriction, but not vaso-relaxation, and the synthesis of specific pro-constriction eicosanoids. Removal of the aortic endothelium did not alter the effect of inhibition of Δ6 and Δ5 desaturases on Pe-mediated vasoconstriction. Thus arterial smooth muscle 20:4n-6 biosynthesis de novo appears to be important for Pe-mediated vasoconstriction. Next we studied genes encoding these desaturases, finding that maternal 21% fat reduced Fads2 mRNA expression and increased Fads1 in offspring aortae, indicating dysregulation of 20:4n-6 biosynthesis. Methylation at CpG -394 bp 5' to the Fads2 transcription start site predicted its expression. This locus was hypermethylated in offspring of dams fed 21% fat. Pe treatment of aortae for 10 minutes increased Fads2, but not Fads1, mRNA expression (76%; P<0.05). This suggests that Fads2 may be an immediate early gene in the response of aortae to Pe. Thus both amount and type of maternal dietary fat induce altered regulation of vascular tone in offspring though differential effects on vaso-relaxation, and persistent changes in vasoconstriction via epigenetic processes controlling arterial polyunsaturated fatty acid biosynthesis.


Asunto(s)
Arterias/efectos de los fármacos , Arterias/fisiopatología , Grasas de la Dieta/efectos adversos , Ácidos Grasos Insaturados/biosíntesis , Madres , Acetilcolina/farmacología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Arterias/metabolismo , delta-5 Desaturasa de Ácido Graso , Ácidos Grasos Insaturados/sangre , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Agonistas Muscarínicos/farmacología , Fenilefrina/farmacología , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Muscarínicos/metabolismo , Estearoil-CoA Desaturasa/genética , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
20.
Br J Nutr ; 108(5): 852-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22136740

RESUMEN

Environmental exposures throughout the life course, including nutrition, may induce phenotypic and epigenetic changes. There is limited information about how timing affects the nature of such effects induced by a specific nutritional exposure. We investigated the effect of increased exposure to folic acid before birth or during the juvenile-pubertal period in rats on the epigenetic regulation of glucose homeostasis. Rats were fed either a folic acid-adequate (AF; 1 mg/kg feed) or a folic acid-supplemented (FS; 5 mg/kg feed) diet from conception until delivery and then an AF diet during lactation. Juvenile rats were fed either the AF or the FS diet from weaning for 28 d and then an AF diet. Liver and blood were collected after a 12 h fast between postnatal days 84 and 90. Maternal FS diet increased plasma glucose concentration significantly (P < 0·05) in females, but not in males. Post-weaning FS diet decreased glucose concentration significantly in females, but increased glucose concentration in males. There were no effects of the FS diet on phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in males, while the pattern of expression was related to plasma glucose concentration in females. The FS diet induced specific changes in the methylation of individual CpG in females, but not in males, which were related to the time of exposure. Methylation of CpG - 248 increased the binding of CCAAT-enhancer-binding protein ß to the PEPCK promoter. Together, these findings show that both the period during the life course and sex influence the effect of increased exposure to folic acid on the epigenetic regulation of PEPCK and glucose homeostasis.


Asunto(s)
Metilación de ADN , Dieta , Ácido Fólico/análisis , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , Destete , Animales , Secuencia de Bases , Glucemia/análisis , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Femenino , Regulación Enzimológica de la Expresión Génica , Masculino , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA