Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499251

RESUMEN

Excess melanin in skin is known to be the main cause of hyper-pigmentary skin diseases such as freckles and lentigo. This study aimed to evaluate the depigmenting efficacy of an extract from the marine microorganism strain, Streptomyces sp. SNA077. To determine the anti-melanogenic efficacy of SNA077, we assessed the melanin contents of SNA077-treated B16, Melan-a, and MNT-1 cells. We observed the expression of key enzymes in melanogenesis via qRT-PCR and Western blot analyses. We further estimated the skin-whitening effect of SNA077 using a skin-equivalent model. SNA077 dramatically decreased the melanin production of B16 cells, Melan-a, and MNT-1 cells. In B16 cells treated with SNA077, the activity of cellular tyrosinase was clearly inhibited. In addition, the mRNA and protein expression levels of melanogenic genes were suppressed by SNA077 treatment in B16 and MNT-1 cells. Upstream of tyrosinase, the expression levels of phospho-CREB, phospho-p38, PKA activity, cyclic AMP production, and MC1R gene expression were inhibited by SNA077. Finally, SNA077 clearly showed a skin-brightening effect with a reduced melanin content in the skin tissue model. Collectively, our results suggest for the first time that an extract of marine Streptomyces sp. SNA077 could be a novel anti-melanogenic material for skin whitening.


Asunto(s)
Melanoma Experimental , Streptomyces , Animales , Melaninas , Streptomyces/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Línea Celular Tumoral , Monofenol Monooxigenasa/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Extractos Vegetales/farmacología , Melanoma Experimental/metabolismo
2.
Mol Neurobiol ; 53(8): 5401-12, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26446019

RESUMEN

Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. This study investigated whether treatment with the herbal formula PM012 would improve the cognitive function and the pathological features of AD in 3xTg-AD mice. The cognitive function of 3xTg-AD mice was assessed using the Morris water maze test and positron-emission tomography (PET) with 18 F-2 fluoro-2-deoxy-D-glucose ([F-18] FDG) neuroimaging. The levels of the amyloid beta (Aß) deposits in the hippocampus were evaluated by immunohistochemistry. Neurogenesis was assessed by quantitative labeling with the DNA marker bromodeoxyuridine (BrdU) and the newborn neuron marker doublecortin (DCX). PM012 treatment significantly ameliorated memory deficit in AD mice, as shown by shortened escape latencies and increased time spent in the target zone during probe tests. In addition, PM012 significantly decreased Aß deposits, up-regulated the expression of brain-derived neurotrophic factor (BDNF), increased neurogenesis, and improved brain glucose metabolism in the 3xTg-AD mice. These results suggest that PM012 could be a promising treatment for AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Neurogénesis , Envejecimiento/patología , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal , Peso Corporal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Medicamentos Herbarios Chinos/farmacología , Glucosa/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/tratamiento farmacológico , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/efectos de los fármacos , Neuropéptidos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-25140184

RESUMEN

Parkinson's disease (PD) is a neurodegenerative movement disorder that is characterized by the progressive degeneration of the dopaminergic (DA) pathway. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes damage to the DA neurons, and 1-4-methyl-4-phenylpyridinium (MPP(+)) causes cell death in differentiated PC12 cells that is similar to the degeneration that occurs in PD. Moreover, MPTP treatment increases the activity of the brain's immune cells, reactive oxygen species- (ROS-) generating processes, and glutathione peroxidase. We recently reported that Cuscutae Semen (CS), a widely used traditional herbal medicine, increases cell viability in a yeast model of PD. In the present study, we examined the inhibitory effect of CS on the neurotoxicity of MPTP in mice and on the MPP+-induced cell death in differentiated PC12 cells. The MPTP-induced loss of nigral DA neurons was partly inhibited by CS-mediated decreases in ROS generation. The activation of microglia was slightly inhibited by CS, although this effect did not reach statistical significance. Furthermore, CS may reduce the MPP+ toxicity in PC12 cells by suppressing glutathione peroxidase activation. These results suggest that CS may be beneficial for the treatment of neurodegenerative diseases such as PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA