Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
In Vitro Cell Dev Biol Anim ; 58(1): 29-36, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34907494

RESUMEN

Chrysoeriol, a dietary methoxyflavonoid which is found in tropical medicinal plants, has been shown to have antioxidant, anti-inflammatory, and antineoplastic properties. The present study aimed to investigate the effects of chrysoeriol and its related mechanisms in rat C6 glioma cells. Cell viability in rat C6 glioma cells were measured by MTT assay. The protein expression levels of cleaved caspase-3, caspase-3, pro-apoptotic (Bax), anti-apoptotic protein (Bcl-2), and Annexin V were detected by Western blot analysis and immunocytochemical staining. Results showed that chrysoeriol significantly decreased cell viability and induced apoptosis in rat C6 glioma cells. Chrysoeriol significantly increased the levels of Bax/Bcl-2 ratio and cleaved caspase-3/caspase-3 ratio. Moreover, treatment with chrysoeriol significantly reduced the phosphorylation of PI3K, Akt, and mTOR expression in ratios. These results suggest that chrysoeriol promote apoptosis in rat C6 glioma cells via suppression of the PI3K/Akt/mTOR signaling pathway, thereby demonstrating the potential antineoplastic effects of chrysoeriol on glioma cells.


Asunto(s)
Glioma , Enfermedades de los Roedores , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Flavonas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Serina-Treonina Quinasas TOR/metabolismo
3.
J Ethnopharmacol ; 279: 114347, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34147616

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Holothuria (Metriatyla) scabra Jaeger (H. scabra), sea cucumber, is the marine organism that has been used as traditional food and medicine to gain the health benefits since ancient time. Although our recent studies have shown that crude extracts from H. scabra exhibited neuroprotective effects against Parkinson's disease (PD), the underlying mechanisms and bioactive compounds are still unknown. AIM OF THE STUDY: In the present study, we examined the efficacy of purified compounds from H. scabra and their underlying mechanism on α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration in a transgenic Caenorhabditis elegans PD model. MATERIAL AND METHODS: The H. scabra compounds (HSEA-P1 and P2) were purified and examined for their toxicity and optimal dose-range by food-clearance and lifespan assays. The α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration were determined using transgenic C. elegans model, Punc-54::α-syn and Pdat-1:: α-syn; Pdat-1::GFP, respectively, and then further investigated by determining the behavioral assays including locomotion rate, basal slowing rate, ethanol avoidance, and area-restricted searching. The underlying mechanisms related to autophagy were clarified by quantitative PCR and RNAi experiments. RESULTS: Our results showed that HSEA-P1 and HSEA-P2 significantly diminished α-synuclein accumulation, improved motility deficits, and recovered the shortened lifespan. Moreover, HSEA-P1 and HSEA-P2 significantly protected dopaminergic neurons from α-synuclein toxicity and alleviated dopamine-associated behavioral deficits, i.e., basal slowing, ethanol avoidance, and area-restricted searching. HSEA-P1 and HSEA-P2 also up-regulated autophagy-related genes, including beclin-1/bec-1, lc-3/lgg-1, and atg-7/atg-7. RNA interference (RNAi) of these genes in transgenic α-synuclein worms confirmed that lc-3/lgg-1 and atg-7/atg-7 were required for α-synuclein degradation and DAergic neuroprotection activities of HSEA-P1 and HSEA-P2. NMR and mass spectrometry analysis revealed that the HSEA-P1 and HSEA-P2 contained diterpene glycosides. CONCLUSION: These findings indicate that diterpene glycosides extracted from H. scabra decreases α-synuclein accumulation and protects α-synuclein-mediated DAergic neuronal loss and its toxicities via lgg-1 and atg-7.


Asunto(s)
Diterpenos/farmacología , Glicósidos/farmacología , Holothuria/química , Fármacos Neuroprotectores/farmacología , Animales , Animales Modificados Genéticamente , Autofagia/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Diterpenos/aislamiento & purificación , Neuronas Dopaminérgicas/efectos de los fármacos , Glicósidos/aislamiento & purificación , Locomoción/efectos de los fármacos , Degeneración Nerviosa/prevención & control , Fármacos Neuroprotectores/aislamiento & purificación , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA