Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 92: 153767, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34597905

RESUMEN

BACKGROUND: Deep vein thrombosis (DVT) is a kind of blood stasis syndrome. Paeoniae Radix Rubra (PRR) has long been widely used for eliminating blood stasis in China, but its effect on DVT has not yet been reported. PURPOSE: The present study aimed to assess the potential inhibitory effect of the aqueous extract of PRR (i.e.,PRR dispensing granule, PRRDG) on DVT and explore the underlying mechanism. STUDY DESIGN/METHODS: The chemical profile of PRRDG was analyzed by high-performance liquid chromatography. Sprague-Dawley rats were intragastrically treated with PRRDG (0.625, 1.25 and 1.875 g crude drug/kg/d) once daily for 7 consecutive days. On the sixth day, a model of inferior vena cava (IVC) stenosis-induced DVT was established. All rats were sacrificed on the seventh day. Serum was collected for enzyme-linked immunosorbent assay. Thrombus-containing IVC was weighed and further processed for histopathologic examination, immunohistochemical analysis and western blotting. LiCl and LY294002 were adopted to block and increase the activity of glycogen synthase kinase 3ß (GSK3ß), respectively. RESULTS: The chemical profile analysis showed that paeoniflorin, benzoylpaeoniflorin, albiflorin, gallic acid and catechin were the main constituents of PRRDG. LiCl decreased thrombus weight, reduced the number of inflammatory cells in thrombus and vein wall, down-regulated phosphorylated NF-κB p65 (p-p65) protein expression. Similarly, PRRDG decreased thrombus weight and tissue factor (TF) protein expression. PRRDG reduced the protein expression levels of P-selectin, monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in venous endothelium, serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and the number of inflammatory cells in thrombus and vein wall. Moreover, PRRDG down-regulated p-p65 protein expression and up-regulated phosphorylated GSK3ß (p-GSK3ß) protein expression. LY294002 abrogated the inhibitory effects of PRRDG on thrombus weight, TF protein expression, TNF-α and IL-1ß serum levels, inflammatory cells influxes, and p-p65 protein expression. CONCLUSION: PRRDG prevents DVT by ameliorating inflammation through inhibiting GSK3ß activity.


Asunto(s)
Paeonia , Preparaciones Farmacéuticas , Trombosis de la Vena , Animales , Glucógeno Sintasa Quinasa 3 , Inflamación/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Vena Cava Inferior , Trombosis de la Vena/tratamiento farmacológico , Trombosis de la Vena/prevención & control
2.
Phytomedicine ; 80: 153375, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33096452

RESUMEN

BACKGROUND: Dry age-related macular degeneration (dAMD) leads to serious burden of visual impairment and there is no definitive treatment. Previous studies have showed that naringenin (NAR) significantly increased electroretinography (ERG) c-wave in sodium iodate (NaIO3)-treated rats and viability of NaIO3-treated ARPE-19 cells. But the underlying mechanism is still unknown. PURPOSE: We tested the hypothesis that anti-oxidation mediated by Sirtuin 1 (SIRT1) was important to the protective effect of NAR on dAMD. STUDY DESIGN/METHODS: NaIO3-induced mice retinopathy and ARPE-19 cells injury models were established. In vivo, the protective effect of NAR eye drops on retina was evaluated by flash ERG (FERG) recording and histopathological examination. In vitro, viability of ARPE-19 cells, and the levels of lactic dehydrogenase (LDH), reactive oxygen species (ROS) and carbonyl protein were detected. Protein expression of SIRT1 was analyzed by immunochemical staining, immunofluorescence and western blotting. RESULTS: NAR eye drops improved retinal function and morphology and normalized the protein expression of SIRT1 in mice exposed to NaIO3. NAR promoted the survival of ARPE-19 cells in a concentration-dependent manner. NAR up-regulated SIRT1 protein expression, and decreased levels of ROS and carbonyl protein. Moreover, EX527, a selective inhibitor of SIRT1, abolished the effects of NAR on the cell viability and ROS. In addition, SRT1720, a selective agonist of SIRT1, improved the viability of cells and suppressed the production of ROS. CONCLUSION: Our findings indicate that SIRT1-mediated anti-oxidation contributes to the protective effect of NAR eye drops on dAMD.


Asunto(s)
Flavanonas/farmacología , Sustancias Protectoras/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Sirtuina 1/metabolismo , Animales , Carbazoles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Yodatos/toxicidad , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Soluciones Oftálmicas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/tratamiento farmacológico , Epitelio Pigmentado de la Retina/citología , Regulación hacia Arriba/efectos de los fármacos
3.
Phytomedicine ; 77: 153285, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32707369

RESUMEN

BACKGROUND: Deep vein thrombosis (DVT) is a kind of blood stasis syndrome. Spatholobi Caulis (SC) has been widely used for the treatment of blood stasis syndrome in China, but the underlying mechanism remains poorly understood. PURPOSE: The aim of present study was to investigate the anti-DVT mechanism of Spatholobi Caulis dispensing granule (SCDG). STUDY DESIGN/METHODS: A rat model of inferior vena cava (IVC) stenosis-induced DVT and a cell model of oxygen-glucose deprivation (OGD) were performed. Rats were orally administered with SCDG solution once daily for seven consecutive days. IVC stenosis-induced DVT was operated on the sixth day. Thrombi were harvested and weighed on the seventh day. Pathological changes were observed by hematoxylin-eosin (HE) staining. Tumor necrosis factor (TNF)-α and interleukin (IL)-1ß of serum were analyzed by enzyme-linked immunosorbent assay. C-reactive protein (CRP) was measured with turbidimetric immunoassay. Protein expressions in thrombosed IVCs and/or OGD-stimulated EA. hy926 cells were evaluated by western blot and/or immunofluorescence analyses. RESULTS: SCDG dramatically decreased thrombus weight. SCDG decreased tissue factor (TF) protein expression, inflammatory cells influxes in thrombosed vein wall and serum levels of inflammatory cytokines and CRP. Further, SCDG up-regulated Sirtuin 1 (SIRT1) protein expression and down-regulated acetylated-NF-κB p65 (Ace-p65) protein expression. Moreover, SCDG up-regulated nuclear factor-erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expressions, and down-regulated phosphorylated-NF-κB p65 (p-p65) protein expression. In the OGD cell model, SCDG medicated serum decreased the protein expression of TF. SCDG medicated serum enhanced SIRT1 protein expression and reduced Ace-p65 nuclear protein expression. SCDG medicated serum promoted protein expressions of nuclear Nrf2 and total HO-1, and inhibited translocation of p65. Furthermore, inhibiting SIRT1 and Nrf2 reversed the protective effect of SCDG medicated serum on OGD-induced EA. hy926 cells. CONCLUSION: SCDG may prevent DVT through antiinflammation via SIRT1 and Nrf2.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fibrinolíticos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Trombosis de la Vena/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Constricción Patológica/complicaciones , Citocinas/metabolismo , Medicamentos Herbarios Chinos/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba , Trombosis de la Vena/etiología , Trombosis de la Vena/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA