Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 13(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34836239

RESUMEN

Obesity is associated with the risk of cardiovascular disease, and non-nutritive sweetener, such as acesulfame potassium (AceK) has been used to combat obesity. However, the effects of AceK on cardiovascular disease are still unclear. In this study, high cholesterol diet (HCD)-fed ApoE-/- mice had dysregulated plasma lipid profile, and developed atherosclerosis, determined by atherosclerotic plaque in the aorta. Supplement of AceK in HCD worsened the dyslipidemia and increased atherosclerotic plaque, as compared with HCD-fed ApoE-/- mice. Since treatment of AceK in RAW264.7 macrophages showed no significant effects on inflammatory cytokine expressions, we then investigated the impacts of AceK on lipid metabolism. We found that AceK consumption enhanced hepatic lipogenesis and decreased ß-oxidation in ApoE-/- mice. In addition, AceK directly increased lipogenesis and decreased ß-oxidation in HepG2 cells. Taken together, a concurrent consumption of AceK exacerbated HCD-induced dyslipidemia and atherosclerotic lesion in ApoE-/- mice, and AceK might increase the risk of atherosclerosis under HCD.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/metabolismo , Aterosclerosis/patología , Progresión de la Enfermedad , Metabolismo de los Lípidos , Edulcorantes no Nutritivos/efectos adversos , Tiazinas/efectos adversos , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/complicaciones , Aterosclerosis/genética , Citocinas/metabolismo , Dieta Alta en Grasa , Dislipidemias/complicaciones , Regulación de la Expresión Génica , Células Hep G2 , Homeostasis , Humanos , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Noqueados , Células RAW 264.7 , Tiazinas/administración & dosificación
2.
Clin Exp Pharmacol Physiol ; 39(1): 63-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22032308

RESUMEN

1. Tanshinone IIA, one of the active components of the Radix of Salvia miltiorrhiza, is used in traditional Chinese medicine to treat cardiovascular diseases. However, the intracellular mechanism of action of tanshinone IIA remain to be determined. The aims of the present study were to test the hypothesis that tanshinone IIA alters strain-induced endothelin (ET)-1 expression and nitric oxide (NO) production, as well as to identify the putative signalling pathways involved, in human umbilical vein endothelial cells (HUVEC). 2. Cultured HUVEC were exposed to cyclic strain in the presence of 1-10 µmol/L tanshinone IIA. Expression of ET-1 was examined by reverse transcription-polymerase chain reaction and ELISA. Phosphorylation of endothelial NO synthase (eNOS) and activating transcription factor (ATF) 3 was assessed by western blot analysis. 3. Tanshinone IIA (3 and 10 µmol/L) inhibited strain-induced ET-1 expression. In contrast, NO production, eNOS phosphorylation and ATF3 expression were enhanced by tanshinone IIA. The eNOS inhibitor N(G) -nitro-L-arginine methyl ester (l-NAME; 100 µmol/L), the phosphatidylinositol 3-kinase inhibitor LY294002 (5 µmol/L) and the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (ODQ; 10 µmol/L) inhibited tanshinone IIA-induced increases in ATF3 expression. Moreover, treatment of HUVEC with either an NO donor (3,3-bis [aminoethyl]-1-hydroxy-2-oxo-1-triazene; 500 µmol/L) or an ATF3 activator (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal; 5 µmol/L) resulted in the repression of strain-induced ET-1 expression. The inhibitory effect of tanshinone IIA on strain-induced ET-1 expression was significantly attenuated by l-NAME, ODQ and the transfection of small interfering RNA for ATF3. 4. In conclusion, tanshinone IIA inhibits strain-induced ET-1 expression by increasing NO and upregulating ATF3 in HUVEC. The present study provides important new insights into the molecular pathways that may contribute to the beneficial effects of tanshinone IIA in the cardiovascular system.


Asunto(s)
Abietanos/farmacología , Enfermedades Cardiovasculares/prevención & control , Microambiente Celular , Regulación hacia Abajo/efectos de los fármacos , Endotelina-1/metabolismo , Endotelio Vascular/efectos de los fármacos , Factor de Transcripción Activador 3/agonistas , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Células Cultivadas , Endotelina-1/genética , Endotelio Vascular/metabolismo , Inhibidores Enzimáticos/farmacología , Guanilato Ciclasa/antagonistas & inhibidores , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA