RESUMEN
Low-level laser acupuncture (LLLA) produces photobiomodulation through acupuncture point and is an alternative to low-level laser therapy. Although the analgesic effect of LLLA on chronic pain has been proven, its effect on acute postincisional pain has yet to be investigated. A plantar incision (PI) model was used to mimic human postsurgical pain. Male adult rats received GaAlAs laser irradiation at the right ST36 acupoint immediately after operation and on the following 4 days. Three laser treatment groups (two red laser groups with a 30- or 15-min treatment duration and one 30-min near-infrared laser group) were compared with sham LLLA and naive groups and an electroacupuncture (EA) group (separate study). Behavioral withdrawal thresholds of both hind paws were measured before and after incision. Expression of mitogen-activated protein kinases (p-ERK and p-p38), inducible nitric oxide synthase (iNOS), and tumor necrosis factor (TNF) in the spinal cord was analyzed. All three LLLA treatments attenuated post-PI tactile allodynia in the ipsilateral paw, but only the 30-min red laser treatment affected the contralateral paw and had similar efficacy to that of EA. All laser treatments barely reduced heat hyperalgesia in both hind paws. At 3 days after PI, the 30-min red laser group showed reversed increases of PI-induced p-ERK, p-p38, and iNOS but not TNF expression in the spinal cord. Repetitive LLLA treatments ameliorated PI-induced mechanical pain. The inhibition of multiple sensitization signals highlights the unique clinical role of LLLA. Thus, LLLA is an alternative to EA as an adjuvant for postoperative pain control.
Asunto(s)
Analgésicos/farmacología , Electroacupuntura , Terapia por Láser , Manejo del Dolor , Dolor/genética , Dolor/patología , Puntos de Acupuntura , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Hiperalgesia/terapia , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Dolor/enzimología , Ratas Sprague-Dawley , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The aim of this study was to investigate the role of retained acupuncture (RA) in neurotoxin-induced Parkinson's disease (PD) mice. Male C57BL/6 mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce the PD model. The mice were divided into four groups, namely, (1) normal; (2) MPTP+retained acupuncture (RA); (3) MPTP+electroacupuncture (EA); (4) MPTP+sham acupuncture (SA). After mice being manipulated with/without acupuncture at acupoints (Daling, PC 7), groups 2-4 were injected with MPTP (15 mg/kg/d). The mice were evaluated for behavioral changes, in terms of time of landing, after acupuncture treatment. The animals were sacrificed and their brains assayed for dopamine and its metabolites and tyrosine hydroxylase (TH) expression by using HPLC and immunohistochemistry/Western blotting, respectively. [(123)I] IBZM-SPECT imaging between SA and RA groups were compared. The results showed that the time of landing of the three groups with treatment was significant longer than group 1 (normal) (4.33±0.15 s). Nonetheless, group 2 (RA) (7.13±0.20 s) had a shorter time of landing than group 4 (SA) (7.89±0.46 s). The number of TH (+) neurons and the expression of TH proteins were significantly higher in the RA group than in the SA/EA groups. RA also increased the uptake of [(123)I] IBZM into the triatum compared to the SA group. We conclude that RA possibly attenuates neuronal damage in MPTP-induced PD mice, which suggests RA may be useful as a complementary strategy when treating human PD.