Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phytomedicine ; 119: 154972, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37531903

RESUMEN

BACKGROUND: As first-line clinical drugs, tripterygium glycoside tablets (TGTs) often have inconsistent efficacy and toxic side effects, mainly due to inadequate quality control. Therefore, clinically relevant quality standards for TGTs are urgently required. PURPOSE: Based on chemical substances and considering pharmacological efficacy, we aimed to develop an effective quality evaluation method for TGTs. METHODS: Representative commercial samples of TGTs were collected from different manufacturers, and qualitative UHPLC/LTQ-Orbitrap-MS and quantitative UHPLC-MS/MS analysis methods were successfully applied to evaluate their quality similarities and differences based on their chemical properties. Then the anti-immunity, anti-inflammatory and antitumor activities of TGTs and related monomers were evaluated using Jurkat, RAW264.7, MIA PaCa-2, and PANC-1 as cellular models. Subsequently, we predicted and verified small molecule-DCTPP1 interactions via molecular docking using the established DCTPP1 enzymatic activity assay. Finally, we performed a gray relational analysis to evaluate the chemical characteristics and biological effects of TGTs produced by different manufacturers. RESULTS: We collected 24 batches of TGTs (D01-D24) from 5 manufacturers (Co. A, Co. B, Co. C, Co. D, Co. E) for quality evaluation. The chemical composition analysis revealed significant differences in the substance bases of the samples. The D02, D18-D20 samples from Co. B constituted a separate group that differed from other samples, mainly in their absence of diterpenoids and triterpenoids, including triptolide, triptophenolide, and triptonide. In vitro anti-immunity, antitumor and anti-inflammatory tests using the same TGT concentration revealed that, except for D02, D18-D20, the remaining 20 samples exhibited different degrees of anti-immunity, antitumor and anti-inflammatory activity. Our experiments verified that triptolide, triptophenolide, and triptonide were all DCTPP1 inhibitors, and that TGTs generally exhibited DCTPP1 enzyme inhibitory activity. Moreover, the inhibitory activity of D02, D18-D20 samples from Co. B was much lower than that of the other samples, with a nearly tenfold difference in IC50. Further comprehensive analysis revealed a high correlation between DCTPP1 enzyme inhibition activity and the anti-immunity and antitumor and anti-inflammatory activities of these samples. CONCLUSION: The established DCTPP1 enzymatic activity assay proved suitable for quantitative pharmacological and pharmaceutical analysis to complement the existing quality control system for TGTs and to evaluate their effectiveness.


Asunto(s)
Glicósidos Cardíacos , Medicamentos Herbarios Chinos , Glicósidos/farmacología , Glicósidos/análisis , Medicamentos Herbarios Chinos/química , Espectrometría de Masas en Tándem/métodos , Tripterygium/química , Simulación del Acoplamiento Molecular , Comprimidos/química , Biomarcadores
2.
Bioresour Bioprocess ; 10(1): 2, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38647644

RESUMEN

Physcion is an anthraquinone compound observed dominantly in medicinal herbs. This anthraquinone possesses a variety of pharmaceutically important activities and has been developed to be a widely used antifungal biopesticide. Herein, we report on the effective preparation of 3R-torosachrysone (4), a tetrahydroanthracene precursor of physcion, in Aspergillus oryzae NSAR1 by heterologous expression of related genes mined from the phlegmacins-producing ascomycete Talaromyces sp. F08Z-0631. Conditions for converting 4 into physcion were studied and optimized, leading to the development of a concise approach for extracting high-purity physcion from the alkali-treated fermentation broth of the 4-producing A. oryzae strain.

3.
Anal Chem ; 94(50): 17606-17615, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36473140

RESUMEN

The amine submetabolome, including amino acids (AAs) and biogenic amines (BAs), is a class of small molecular compounds exhibiting important physiological activities. Here, a new pyrylium salt named 6,7-dimethoxy-3-methyl isochromenylium tetrafluoroborate ([d0]-DMMIC) with stable isotope-labeled reagents ([d3]-/[d6]-DMMIC) was designed and synthesized for amino compounds. [d0]-/[d3]-/[d6]-DMMIC-derivatized had a charged tag and formed a set of molecular ions with an increase of 3.02 m/z and the characteristic fragment ions of m/z 204.1:207.1:210.1. When DMMIC coupled with liquid chromatography-mass spectrometry (LC-MS), a systematic methodology evaluation for quantitation proved to have good linearity (R2 between 0.9904 and 0.9998), precision (interday: 2.2-21.9%; intraday: 1.0-19.7%), and accuracy (recovery: 71.8-108.8%) through the test AAs. Finally, the methods based on DMMIC and LC-MS demonstrated the advantaged application by the nontargeted screening of BAs in a common medicinal herb Senecio scandens and an analysis of metabolic differences among the amine submetabolomes between the carcinoma and paracarcinoma tissues of esophageal squamous cell carcinoma (ESCC). A total of 20 BA candidates were discovered in S. scandens as well as the finding of 13 amine metabolites might be the highest-potential differential metabolites in ESCC. The results showed the ability of DMMIC coupled with LC-MS to analyze the amine submetabolome in herbs and clinical tissues.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Aminoácidos/química , Aminas Biogénicas , Cloruro de Sodio , Isótopos de Carbono/química
4.
Eur J Med Chem ; 228: 114030, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34883292

RESUMEN

The epidemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread worldwide and efficacious therapeutics are urgently needed. 3-Chymotrypsin-like cysteine protease (3CLpro) is an indispensable protein in viral replication and represents an attractive drug target for fighting COVID-19. Herein, we report the discovery of 9,10-dihydrophenanthrene derivatives as non-peptidomimetic and non-covalent inhibitors of the SARS-CoV-2 3CLpro. The structure-activity relationships of 9,10-dihydrophenanthrenes as SARS-CoV-2 3CLpro inhibitors have carefully been investigated and discussed in this study. Among all tested 9,10-dihydrophenanthrene derivatives, C1 and C2 display the most potent SARS-CoV-2 3CLpro inhibition activity, with IC50 values of 1.55 ± 0.21 µM and 1.81 ± 0.17 µM, respectively. Further enzyme kinetics assays show that these two compounds dose-dependently inhibit SARS-CoV-2 3CLprovia a mixed-inhibition manner. Molecular docking simulations reveal the binding modes of C1 in the dimer interface and substrate-binding pocket of the target. In addition, C1 shows outstanding metabolic stability in the gastrointestinal tract, human plasma, and human liver microsome, suggesting that this agent has the potential to be developed as an orally administrated SARS-CoV-2 3CLpro inhibitor.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Antivirales/química , Antivirales/uso terapéutico , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Tracto Gastrointestinal/metabolismo , Humanos , Cinética , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores
5.
Nat Prod Rep ; 38(4): 843-860, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33146205

RESUMEN

Covering: 2000 to 2020 Triptolide is a bioactive diterpene triepoxide isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal plant whose extracts have been used as anti-inflammatory and immunosuppressive remedies for centuries. Although triptolide and its analogs exhibit potent bioactivities against various cancers, and inflammatory and autoimmune diseases, none of them has been approved to be used in the clinic. This review highlights advances in material sourcing, molecular mechanisms, clinical progress and new drug design strategies for triptolide over the past two decades, along with some prospects for the future course of development of triptolide.


Asunto(s)
Diterpenos/farmacología , Fenantrenos/farmacología , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Diterpenos/aislamiento & purificación , Diseño de Fármacos , Descubrimiento de Drogas , Compuestos Epoxi/aislamiento & purificación , Compuestos Epoxi/farmacología , Predicción , Humanos , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Fenantrenos/aislamiento & purificación , Tripterygium/química
6.
Front Pharmacol ; 10: 565, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178734

RESUMEN

Effective delivery of chemotherapeutic agents to tumors is a critical objective of improved cancer therapy. Traditional antiangiogenic therapy aims at eradicating tumor blood vessels, but the subsequently reduced blood perfusion may limit the drug amount delivered into the tumor and potentially lead to tumor hypoxia, which has been proved to be unable to meet the therapeutic expectations. "Shexiang Baoxin Pill" (SBP) is a well-known traditional Chinese medicine (TCM) used in clinical treatment of cardiovascular diseases, which has the pharmacological effect of pro-angiogenesis demonstrated recently. In this study, we disclosed our finding that SBP could enhance the effective treatment performance of gemcitabine (GEM) while minimizing the toxic side effects caused by GEM. Mechanistically, SBP increased tumor angiogenesis, blood perfusion, vascular permeability, and vessel dilation, which subsequently favored the delivery of GEM to the tumor lesion. Moreover, combined treatment with SBP and GEM could modify tumor microenvironment and consequently overcome multidrug resistance, and this combination therapy is also suitable for combination of SBP with some other chemotherapeutic drugs as well. These results suggest that combining SBP with chemotherapeutic agents achieves better treatment efficiency, which can open an avenue for expanding the combined treatment of anti-cancer chemotherapeutic drugs with TCM.

7.
Org Lett ; 18(6): 1219-21, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26925758

RESUMEN

The first and asymmetric total synthesis of hedyosumins A, B, and C was accomplished in 13-14 steps from simple starting materials. The essential tools that allow us to access the tetracyclic skeleton include an organocatalytic [4 + 3] cycloaddition reaction, an intramolecular aldol condensation, and an intramolecular carboxymercuration/demercuration enabled lactonization. A CBS-catalyzed asymmetric reduction was employed to boost the ee of the synthetic natural products to an excellent level. This synthesis established the absolute configurations of hedyosumins A, B, and C.


Asunto(s)
Productos Biológicos/síntesis química , Medicamentos Herbarios Chinos/síntesis química , Magnoliopsida/química , Sesquiterpenos de Guayano/síntesis química , Aldehídos/química , Productos Biológicos/química , Catálisis , Cristalografía por Rayos X , Medicamentos Herbarios Chinos/química , Conformación Molecular , Estructura Molecular , Sesquiterpenos de Guayano/química
8.
J Org Chem ; 79(1): 240-50, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24299147

RESUMEN

Huperzine A, huperzine B, and huperzine U are congeners isolated from the Chinese herb Huperzia serrata (= Lycopodium serratum ) in minuscule amounts. The most efficient total synthesis of huperzine A, the first asymmetric total syntheses of huperzine B, and the first total synthesis of huperzine U have been achieved efficiently in overall yields of 17%, 10%, and 9%, respectively, each spanning 10-13 steps from (R)-pulegone. The featured steps include palladium-catalyzed Buchwald-Hartwig coupling and Heck cyclization reactions and an Ir-catalyzed olefin isomerization reaction. This work has established the absolute configurations of huperzine B and huperzine U and revealed that natural huperzine A, huperzine B, and huperzine U possess the same set of absolute stereochemistries, thus providing support for the potential role of huperzine B and huperzine U in the biosynthesis of huperzine A.


Asunto(s)
Alcaloides/síntesis química , Medicamentos Herbarios Chinos/síntesis química , Lycopodium/química , Monoterpenos/química , Sesquiterpenos/síntesis química , Alcaloides/química , Monoterpenos Ciclohexánicos , Medicamentos Herbarios Chinos/química , Estructura Molecular , Sesquiterpenos/química , Estereoisomerismo
9.
Bioresour Technol ; 100(9): 2463-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19153040

RESUMEN

A new resource of biocatalyst for asymmetric reduction of aromatic ketones has been discovered for the first time from a common plant seed, adzuki bean, i.e. Phaseolus angularis (Willd.) W.F. Wight. The study investigated the best methods to prepare the biocatalyst and its ability to reduce ketones. Our results indicated that the biocatalyst from adzuki bean could reduce various aromatic ketones at relatively high concentrations (e.g. 100mM), exhibiting excellent stereoselectivity (>98% e.e.). In addition, it was found that NADPH acts as the reducing cofactor, which can be regenerated by the crude enzyme system itself using glucose as an auxiliary substrate.


Asunto(s)
Cetonas/química , Phaseolus/enzimología , Semillas/enzimología , Biotransformación , Catálisis , Coenzimas/química , Glucosa/química , Cinética , NADP/química , Extractos Vegetales/química , Especificidad por Sustrato
10.
J Biotechnol ; 133(4): 469-77, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18207272

RESUMEN

Salidroside is a natural glycoside with pharmacological activities of resisting anoxia, microwave radiation and fatigue, improving oxygen lack, and postponing ageing. In this work, salidroside and other natural glucosides such as cinnamyl O-beta-d-glucopyranoside and 4-methoxybenzyl O-beta-d-glucopyranoside were efficiently synthesized via an environmentally benign and energy economic process. In the synthetic process, apple seed, easily available from discards of fruit processing factories, was employed as a natural and green catalyst. Moreover, all of the catalyst, solvent and excessive substrate was reused or recycled. The biocatalytic reaction was carried out in a clean and less toxic medium of aqueous tert-butanol and the glucoside produced was selectively removed from reaction mixture by alumina column adsorption, making excessive substrate (aglycon) recyclable for a repeated use in the next batch of reaction. For improvement of the biocatalyst stability, apple seed meal was further cross-linked by glutaraldehyde, yielding a net-like porous structure within which the dissociating proteins were immobilized, resulting in improved permeability of the biocatalyst. After the simple cross-linking treatment, the half-life of apple seed catalyst was significantly improved from 29 days to 51 days. The productivity of the bioreactor in the case of salidroside can reach ca. 1.9 gl(-1)d(-1), affording the product in up to 99.3% purity after refinement.


Asunto(s)
Glicósidos/química , Malus/química , Semillas/química , Óxido de Aluminio/química , Catálisis , Cromatografía Líquida de Alta Presión , Glucosidasas/metabolismo , Glucósidos/química , Glicósidos/biosíntesis , Glicósidos/síntesis química , Microscopía Electrónica de Rastreo , Estructura Molecular , Fenoles/química , Semillas/metabolismo , Semillas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA