Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 27(11): 2503-2515, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34924707

RESUMEN

Peucedani Radix is the dry root of Peucedanum praeruptorum of the umbelliferous family, but the dry root of Angelica decursiva was also the source of Peucedani Radix in the past. As one of the most popular traditional Chinese medicinal herbs, the certified source of Peucedani Radix is still disputed. To better understand the relationship between A. decursiva and P. praeruptorum, we sequenced their chloroplast (cp) genomes. The gene structure, codon usage bias, repeat, simple sequence repeat (SSR), as well as their borders of inverted repeat (IR) regions of the two cp genomes are analyzed to identify potential genetic markers. Great variation is exhibited in the repeat sequences of IR, large single copy regions and the SSRs of the two cp genomes, which can be used as molecular markers to distinguish them. The phylogenetic analysis also indicates that they belong to two different genera in Apiaceae family: A. decursiva is an Angelica plant and P. praeruptorum is a Peucedanum plant. Our observations suggest that the two species are somewhere different in gene features, which contributes to support A. decursiva as an independent species from P. praeruptorum. The results also provide new evidence that A. decursiva should not be regarded as the certified source of Peucedani Radix in taxonomy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01097-w.

2.
Front Plant Sci ; 12: 736332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868120

RESUMEN

The mulberry leaf is a classic herb commonly used in traditional Chinese medicine. It has also been used as animal feed for livestock and its fruits have been made into a variety of food products. Traditionally, mulberry (Morus alba L.) leaf harvesting after frost is thought to have better medicinal properties, but the underlying mechanism remains largely unsolved. To elucidate the biological basis of mulberry leaves after frost, we first explored the content changes of various compounds in mulberry leaves at different harvest times. Significant enrichment of flavonoids was observed with a total of 224 differential metabolites after frost. Subsequently, we analyzed the transcriptomic data of mulberry leaves collected at different harvest times and successfully annotated 22,939 unigenes containing 1,695 new genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed 26, 20, and 59 unigenes related to flavonoids synthesis in three different groups harvested at different times. We found that the expression levels of flavonoid biosynthesis-related unigenes also increased when harvested at a delayed time, which was consistent with the flavonoid accumulation discovered by the metabolomic analysis. The results indicated that low temperature may be a key trigger in flavonoid biosynthesis of mulberry leaves by increasing the expression of flavonoid biosynthesis-related genes. This study also provided a theoretical basis for the optimal harvest time of mulberry leaves.

3.
Hortic Res ; 8(1): 16, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33423040

RESUMEN

Corydalis yanhusuo W.T. Wang is a classic herb that is frequently used in traditional Chinese medicine and is efficacious in promoting blood circulation, enhancing energy, and relieving pain. Benzylisoquinoline alkaloids (BIAs) are the main bioactive ingredients in Corydalis yanhusuo. However, few studies have investigated the BIA biosynthetic pathway in C. yanhusuo, and the biosynthetic pathway of species-specific chemicals such as tetrahydropalmatine remains unclear. We performed full-length transcriptomic and metabolomic analyses to identify candidate genes that might be involved in BIA biosynthesis and identified a total of 101 full-length transcripts and 19 metabolites involved in the BIA biosynthetic pathway. Moreover, the contents of 19 representative BIAs in C. yanhusuo were quantified by classical targeted metabolomic approaches. Their accumulation in the tuber was consistent with the expression patterns of identified BIA biosynthetic genes in tubers and leaves, which reinforces the validity and reliability of the analyses. Full-length genes with similar expression or enrichment patterns were identified, and a complete BIA biosynthesis pathway in C. yanhusuo was constructed according to these findings. Phylogenetic analysis revealed a total of ten enzymes that may possess columbamine-O-methyltransferase activity, which is the final step for tetrahydropalmatine synthesis. Our results span the whole BIA biosynthetic pathway in C. yanhusuo. Our full-length transcriptomic data will enable further molecular cloning of enzymes and activity validation studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA