RESUMEN
Increasing carbapenem resistance rates worldwide underscored the urgent need of novel antimicrobials. Ceftazidime-avibactam and aztreonam-avibactam combinations are developed to combat carbapenem resistance, but biological and geographic variations must be considered for antibiotic susceptibility patterns varied. Thus, we sought to assess the susceptibilities of ceftazidime-avibactam and aztreonam-avibactam against 660 carbapenem-nonsusceptible Enterobacteriaceae isolates (472 Klebsiella pneumoniae and 188 Escherichia coli) collected during an earlier Taiwan surveillance study. Agar dilution method was used to determine ceftazidime-avibactam and aztreonam-avibactam susceptibility. Metallo-carbapenemase's contribution to resistance were investigated with EDTA addition. The in vivo efficacies were evaluated using a Caenorhabditis elegans model. High susceptibility rates were observed for ceftazidime-avibactam and aztreonam-avibactam against the 472 carbapenem-nonsusceptible K. pneumoniae (CnsKP) (85.2% and 95.3%, respectively) and 188 carbapenem-nonsusceptible E. coli (CnsEC) isolates (91.5% and 94.1%, respectively). For non-metallo-carbapenemase producers, the susceptibility rates for ceftazidime-avibactam were 93.6% for CnsKP and 97.7% for CnsEC, whereas only 7.1% CnsKP and 11.1% CnsEC in metallo-carbapenemase producers were susceptible to ceftazidime-avibactam. Of all isolates, 95.3% CnsKP and 94.1% CnsEC were susceptible to aztreonam-avibactam. In C. elegans model, ceftazidime-avibactam and aztreonam-avibactam revealed effective against a blaKPC-producing K. pneumoniae isolate in vivo. Our results propose a positive therapeutic approach for both combinations against carbapenem-nonsusceptible Enterobacteriaceae in Taiwan.
RESUMEN
Curcumin is one of the most valuable natural products due to its pharmacological activities. However, the low bioavailability of curcumin has long been a problem for its medicinal use. Large studies have been conducted to improve the use of curcumin; among these studies, curcumin metabolites have become a relatively new research focus over the past few years. Additionally, accumulating evidence suggests that curcumin or curcuminoid metabolites have similar or better biological activity than the precursor of curcumin. Recent studies focus on the protective role of plasma tetrahydrocurcumin (THC), a main metabolite of curcumin, against tumors and chronic inflammatory diseases. Nevertheless, studies of THC in eye diseases have not yet been conducted. Since ophthalmic conditions play a crucial role in worldwide public health, the prevention and treatment of ophthalmic diseases are of great concern. Therefore, the present study investigated the antioxidative, anti-inflammatory, antiangiogenic, and neuroprotective effects of THC on four major ocular diseases: age-related cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). While this study aimed to show curcumin as a promising potential solution for eye conditions and discusses the involved mechanistic pathways, further work is required for the clinical application of curcumin.
Asunto(s)
Curcumina/análogos & derivados , Oftalmopatías/tratamiento farmacológico , Curcumina/metabolismo , Curcumina/uso terapéutico , Humanos , OftalmologíaRESUMEN
Manganese-dependent superoxide dismutase (MnSOD, SodA) and iron-dependent SOD (FeSOD, SodB) are critical cytosolic enzymes for alleviating superoxide stress. Distinct from the singular sodA gene in most bacteria, Stenotrophomonas maltophilia harbors two sodA genes, sodA1 and sodA2. The roles of SodA1, SodA2, and SodB of S. maltophilia in alleviating superoxide stress were investigated. The expression of sod genes was determined by promoter-xylE transcriptional fusion assay and qRT-PCR. SodA2 and sodB expressions were proportional to the bacterial logarithmic growth, but unaffected by menadione (MD), iron, or manganese challenges. SodA1 was intrinsically unexpressed and inducibly expressed by MD. Complementary expression of sodA1 was observed when sodA2 was inactivated. The individual or combined sod deletion mutants were constructed using the gene replacement strategy. The functions of SODs were assessed by evaluating cell viabilities of different sod mutants in MD, low iron-stressed, and/or low manganese-stressed conditions. Inactivation of SodA1 or SodA2 alone did not affect bacterial viability; however, simultaneously inactivating sodA1 and sodA2 significantly compromised bacterial viability in both aerobic growth and stressed conditions. SodA1 can either rescue or support SodA2 when SodA2 is defective or insufficiently potent. The presence of two MnSODs gives S. maltophilia an advantage against superoxide stress.