Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 144: 109270, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070587

RESUMEN

This study discloses the nanoscale silicate platelet-supported nZnO (ZnONSP) applied as novel feed additives in aquaculture. The preparation of the nanohybrid (ZnO/NSP = 15/85, w/w) was characterized by UV-visible spectroscopy, powder X-ray diffraction and transmission electron microscope. The effects of ZnONSP on growth, zinc accumulation, stress response, immunity and resistance to Vibrio alginolyticus in white shrimp (Penaeus vannamei) were \demonstrated. To evaluate the safety of ZnONSP, shrimps (2.0 ± 0.3 g) were fed with ZnONSP containing diets (200, 400 and 800 mg/kg) for 56 days. Dietary ZnONSP did not affect the weight gain, specific growth rate, feed conversion ratio, survival rate, zinc accumulation, and the expression of heat shock protein 70 in tested shrimps. To examine the immunomodulatory effect of ZnONSP, shrimps (16.6 ± 2.4 g) were fed with the same experimental diets for 28 days. Dietary ZnONSP improved the immune responses of haemocyte in tested shrimps, including phagocytic rate, phagocytic index, respiratory burst, and phenoloxidase activity, and upregulated the expression of several genes, including lipopolysaccharide, ß-1,3-glucan binding protein, peroxinectin, penaeidin 2/3/4, lysozyme, crustin, anti-lipopolysaccharide factor, superoxide dismutase, glutathione peroxidase, clotting protein and α-2-macroglobulin. In the challenge experiment, shrimps (17.2 ± 1.8 g) were fed with ZnONSP containing diets (400 and 800 mg/kg) for 7 days and then infected with Vibrio alginolyticus. Notably, white shrimps that received ZnONSP (800 mg/kg) showed significantly improved Vibrio resistance, with a survival rate of 71.4 % at the end of 7-day observation. In conclusion, this study discovers that ZnONSP is a new type of immunomodulatory supplement that are effective on enhancing innate cellular and humoral immunities, and disease resistance in white shrimp.


Asunto(s)
Inmunidad Innata , Penaeidae , Animales , Suplementos Dietéticos , Dieta/veterinaria , Resistencia a la Enfermedad , Vibrio alginolyticus/fisiología , Zinc/farmacología
2.
Fish Shellfish Immunol ; 135: 108673, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36914102

RESUMEN

Hybrid of nanosilver and nanoscale silicate platelet (AgNSP) is a safe, non-toxic nanomaterial which has been applied in medical use due to its strong antibacterial activity. The application of AgNSP in aquaculture was first proposed in the present study by evaluating the in vitro antibacterial activities against four aquatic pathogens, in vitro effects toward shrimp haemocytes as well as the immune responses and disease resistance in Penaeus vannamei fed with AgNSP for 7 days. For evaluating the antibacterial activities of AgNSP in culture medium, the minimum bactericidal concentration (MBC) values against Aeromonas hydrophila, Edwardsiella tarda, Vibrio alginolyticus and Vibrio parahaemolyticus were 100, 15, 625 and 625 mg/L, respectively. Moreover, the inhibition of pathogen growth over a period of 48 h could be achieved by the appropriate treatment of AgNSP in culturing water. In freshwater containing bacterial size of 103 and 106 CFU/mL, the effective doses of AgNSP against A. hydrophila were 12.5 and 450 mg/L, respectively while the effective doses against E. tarda were 0.2 and 50 mg/L, respectively. In seawater with same bacterial size, the effective doses against V. alginolyticus were 150 and 2000 mg/L, respectively while the effective doses against V. parahaemolyticus were 40 and 1500 mg/L, respectively. For the in vitro immune tests, the superoxide anion production and phenoloxidase activity in haemocytes were elevated after in vitro incubation with 0.5-10 mg/L of AgNSP. In the assessment of dietary supplemental effects of AgNSP (2 g/kg), no negative effect on the survival was found at the end of 7 day feeding trail. In addition, the gene expression of superoxide dismutase, lysozyme and glutathione peroxidase were up-regulated in haemocytes taken from shrimps received AgNSP. The following challenge test against Vibrio alginolyticus showed that the survival of shrimp fed with AgNSP was higher than that of shrimp fed with control diet (p = 0.083). Dietary AgNSP improved the Vibrio resistance of shrimp by increasing 22.7% of survival rate. Therefore, AgNSP could potentially be used as a feed additive in shrimp culture.


Asunto(s)
Inmunidad Innata , Penaeidae , Animales , Suplementos Dietéticos , Dieta , Resistencia a la Enfermedad , Superóxidos , Superóxido Dismutasa/metabolismo , Vibrio alginolyticus/fisiología
3.
Toxins (Basel) ; 12(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003487

RESUMEN

Nano-silicate platelets (NSP), an exfoliated product from natural clays, have been validated for biosafety and as an effective supplement to alleviate mycotoxicosis. Since NSP induced noticeable cell death, we therefore investigated further the mechanism of cytotoxicity caused by NSP. Exposure to NSP impaired membrane integrity and caused cell death in a dose-dependent manner. Reactive oxygen species (ROS) generation other than of NADH oxidase origin, and subcellular interactions by internalized NSP also contributed to NSP-induced cell death. NSP persistently provoked receptor-interacting protein 1 Ser/Thr (RIP1) kinase and caspase 6 and 3/7 activation without altering caspase 8 activity and induced evident chromatolysis of necrosis in the later stage. These events proceeded along with increased ER stress and mitochondrial permeability, to final Cyt-C (Cytochrome C) release and AIF (apoptosis inducing factor) translocation, a hallmark of cell necroptosis. Fluorescent probing further manifested NSP traffic, mostly adherence on the cell surfaces, or via internalization, being compartmentalized in the nuclei, cytosols, and mitochondria. Pharmacological approaches with specific inhibitors suggested that endocytosis and particularly RIP1 kinase provocation mediate NSP-induced cell death independent of caspase activation. In conclusion, the necroptotic process contributes to most of the cell death induced by NSP due to membrane interactions/impaired integrity, ROS generation, and subcellular interactions by internalized NSP.


Asunto(s)
Fibroblastos/efectos de los fármacos , Nanopartículas/toxicidad , Necroptosis/efectos de los fármacos , Dióxido de Silicio/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Endocitosis , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Células 3T3 NIH , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Factores de Tiempo
4.
J Agric Food Chem ; 65(31): 6564-6571, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28712299

RESUMEN

The efficacy of nanosilicate clay platelets (NSCP), exfoliated silicates from natural montmorillonites, as a feed additive for ameliorating fumonisin B1 (FB1) toxicosis was evaluated. Toxicological mechanisms by NSCP were examined through proteomic and biochemical analyses. Dietary supplementation with NSCP at a low level of 40 mg/kg of feed improved growth performances in chickens with respect to FB1 toxicosis. Other issues of ameliorated symptoms including serum and/or hepatic aspartate aminotransferase activity, oxidative stress indicators, and sphinganine/sphingosine ratio, a hallmark of FB1 toxicosis, were considered. Chickens with NSCP inclusion alone at 1000 mg/kg of feed exhibited no changes in hepatic histology, oxidative status, and serum parameters and even had a higher feed intake. Proteomic analysis with liver tissues identified 45 distinct proteins differentially affected by FB1 and/or NSCP, in which proteins involved in thiol metabolism and redox regulation, glycolysis, carcinogenesis, and detoxification by glutathione S-transferase were promoted by FB1, whereas NSCP caused differential changes of protein abundances related to methionine/cysteine and choline/glycine interconversion for glutathione synthesis, redox regulation by peroxiredoxin, toxin/metabolite delivery by albumin, glycolysis, tricarboxylic acid cycle, adenosine triphosphate (ATP) synthesis, and chaperon escort for endoplasmic reticulum stress relief. Functional analyses confirmed the enhancement of hepatic metabolic processes for ATP and NAD(P)H production to meet the need for detoxification, antioxidative defense, and toxin/metabolite clearance by FB1 or NSCP ingestion. On the basis of the amelioration of FB1 toxicosis, global profile of hepatic protein expressions, and validated toxicological mechanisms, NSCP were concluded as a safe and effective agent for FB1 detoxification.


Asunto(s)
Silicatos de Aluminio/metabolismo , Alimentación Animal/análisis , Pollos/metabolismo , Aditivos Alimentarios/metabolismo , Fumonisinas/toxicidad , Micotoxinas/toxicidad , Silicatos/metabolismo , Silicatos de Aluminio/efectos adversos , Animales , Pollos/crecimiento & desarrollo , Arcilla , Fumonisinas/metabolismo , Inactivación Metabólica , Hígado/metabolismo , Micotoxinas/metabolismo , Estrés Oxidativo , Silicatos/efectos adversos
5.
J Virol ; 88(8): 4218-28, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24478435

RESUMEN

UNLABELLED: Nanomaterials have the characteristics associated with high surface-to-volume ratios and have been explored for their antiviral activity. Despite some success, cytotoxicity has been an issue in nanomaterial-based antiviral strategies. We previously developed a novel method to fully exfoliate montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). We further modified NSP by capping with various surfactants and found that the surfactant-modified NSP (NSQ) was less cytotoxic. In this study, we tested the antiviral potentials of a series of natural-clay-derived nanomaterials. Among the derivatives, NSP modified with anionic sodium dodecyl sulfate (NSQc), but not the pristine clay, unmodified NSP, a silver nanoparticle-NSP hybrid, NSP modified with cationic n-octadecanylamine hydrochloride salt, or NSP modified with nonionic Triton X-100, significantly suppressed the plaque-forming ability of Japanese encephalitis virus (JEV) at noncytotoxic concentrations. NSQc also blocked infection with dengue virus (DEN) and influenza A virus. Regarding the antiviral mechanism, NSQc interfered with viral binding through electrostatic interaction, since its antiviral activity can be neutralized by Polybrene, a cationic polymer. Furthermore, NSQc reduced the lethality of JEV and DEN infection in mouse challenge models. Thus, the surfactant-modified exfoliated nanoclay NSQc may be a novel nanomaterial with broad and potent antiviral activity. IMPORTANCE: Nanomaterials have being investigated as antimicrobial agents, yet their antiviral potential is overshadowed by their cytotoxicity. By using a novel method, we fully exfoliated montmorillonite clay to generate the most fundamental units of nanoscale silicate platelet (NSP). Here, we show that the surfactant-modified NSP (NSQ) is less cytotoxic and that NSQc (NSP modified with sodium dodecyl sulfate) could potently block infection by dengue virus (DEN), Japanese encephalitis virus (JEV), and influenza A virus at noncytotoxic concentrations. For the antiviral mechanism, we find that the electrostatic interaction between the negatively charged NSQc and the positively charged virus particles blocks viral binding. Furthermore, we used mouse challenge models of JEV and DEN to demonstrate the in vivo antiviral potential of NSQc. Thus, NSQc may function as a potent and safe antiviral nanohybrid against several viruses, and our success in synthesizing surfactant-modified NSP with antiviral activity may shed some light on future antiviral development.


Asunto(s)
Antivirales/farmacología , Bentonita/farmacología , Virus del Dengue/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Nanoestructuras/uso terapéutico , Tensoactivos/química , Animales , Antivirales/química , Bentonita/química , Virus del Dengue/fisiología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa , Humanos , Virus de la Influenza A/fisiología , Ratones , Ratones Endogámicos C57BL , Nanoestructuras/química , Octoxinol , Virosis/tratamiento farmacológico , Virosis/virología
6.
Chemosphere ; 99: 49-55, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24268348

RESUMEN

Drinking water safety has been threatened by increasing harmful algal blooms (HABs) in water sources. HABs are closely associated with eutrophication in freshwater lakes, e.g. Lake Tai in China, and marine environments as well, e.g. Baltic Sea in Europe. Among all HABs, Microcystis aeruginosa attracted much attention due to its easy proliferation and potent toxins, microcystins. Most of the current control technologies can result in immediate release of microcystins which are hard to remove by drinking water treatment processes. Here we propose to simultaneously remove M. aeruginosa and its toxin, microcystin-LR (MC-LR), using nanosilicate platelet (NSP) derived from natural clay mineral. In this study, NSP showed strong selective growth inhibition and good settling enhancing effects on M. aeruginosa and highly efficient removal of MC-LR. NSP can inhibit the growth of M. aeruginosa (initial cell concentration at 3.00×10(6)cellmL(-1)) with a LC50 at 0.28ppm after 12h exposure. At the dosage of 100ppm, NSP can enhance settling of suspended M. aeruginosa. Bacterial growth inhibition tests showed NSP had very mild growth inhibition effects on Escherichia coli at high dosage but promoted the growth of Pseudomonas aeruginosa and Bacillus halodurans. For MC-LR removal, at an initial concentration of 100µgL(-1), NSP achieved higher than 99% removal. Thus, the results suggest that NSP could be an excellent candidate for controlling M. aeruginosa-related HABs in water bodies.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Microcistinas/química , Microcystis/crecimiento & desarrollo , Nanoestructuras/química , Silicatos/química , China , Desinfección/métodos , Eutrofización , Floraciones de Algas Nocivas , Lagos/química , Toxinas Marinas , Microcystis/efectos de los fármacos , Microbiología del Agua , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA