Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447360

RESUMEN

The death and disability caused by myocardial infarction is a health problem that needs to be addressed worldwide, and poor cardiac repair and fibrosis after myocardial infarction seriously affect patient recovery. Postmyocardial infarction repair by M2 macrophages is of great significance for ventricular remodeling. Quercitrin (Que) is a common flavonoid in fruits and vegetables that has antioxidant, anti-inflammatory, antitumor and other effects, but whether it has a role in the treatment of myocardial infarction is unclear. In this study, we constructed a mouse myocardial infarction model and administered Que. We found through cardiac ultrasound that Que administration improved cardiac ejection fraction and reduced ventricular remodeling. Staining of heart sections and detection of fibrosis marker protein levels revealed that Que administration slowed fibrosis after myocardial infarction. Flow cytometry showed that the proportion of M2 macrophages in the mouse heart was increased and that the expression levels of M2 macrophage markers were increased in the Que-treated group. Finally, we identified by metabolomics that Que reduces glycolysis, increases aerobic phosphorylation, and alters arginine metabolic pathways, polarizing macrophages toward the M2 phenotype. Our research lays the foundation for the future application of Que in myocardial infarction and other cardiovascular diseases.


Asunto(s)
Infarto del Miocardio , Quercetina/análogos & derivados , Remodelación Ventricular , Ratones , Animales , Humanos , Reprogramación Metabólica , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Macrófagos/metabolismo , Fibrosis , Miocardio/metabolismo
2.
Small Methods ; : e2400125, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461544

RESUMEN

Nanoformulations with endogenous/exogenous stimulus-responsive characteristics show great potential in tumor cell elimination with minimal adverse effects and high precision. Herein, an intelligent nanotheranostic platform (denoted as TPZ@Cu-SnS2-x /PLL) for tumor microenvironment (TME) and near-infrared light (NIR) activated tumor-specific therapy is constructed. Copper (Cu) doping and the resulting sulfur vacancies can not only improve the response range of visible light but also improve the separation efficiency of photogenerated carriers and increase the carrier density, resulting in the ideal photothermal and photodynamic performance. Density functional theory calculations revealed that the introduction of Cu and resulting sulfur vacancies can induce electron redistribution, achieving favorable photogenerated electrons. After entering cells through endocytosis, the TPZ@Cu-SnS2-x /PLL nanocomposites show the pH responsivity property for the release of the TPZ selectively within the acidic TME, and the released Cu2+ can first interact with local glutathione (GSH) to deplete GSH with the production of Cu+ . Subsequently, the Cu+ -mediated Fenton-like reaction can decompose local hydrogen peroxide into hydroxyl radicals, which can also be promoted by hyperthermia derived from the photothermal effect for tumor cell apoptosis. The integration of photoacoustic/computed tomography imaging-guided NIR phototherapy, TPZ-induced chemotherapy, and GSH-elimination/hyperthermia enhanced chemodynamic therapy results in synergistic therapeutic outcomes without obvious systemic toxicity in vivo.

3.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505899

RESUMEN

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Asunto(s)
Agaricales , Agaricales/metabolismo , Suplementos Dietéticos , Fermentación , Fibras de la Dieta , Micelio
4.
ACS Nano ; 18(11): 8143-8156, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38436248

RESUMEN

The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.


Asunto(s)
Artemisininas , Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Nanovacunas , Aluminio , Neoplasias/tratamiento farmacológico , Hierro , Hidróxidos , Inmunoterapia/métodos , Microambiente Tumoral
5.
Adv Mater ; 36(5): e2308774, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37917791

RESUMEN

Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic noninvasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 inhibitor fluvastatin sodium (Flu) is constructed to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein synthesis, in turn realizing mild photothermal therapy. Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fototerapia , Luz , Neoplasias/tratamiento farmacológico , Inmunoterapia , Lactatos/uso terapéutico , Línea Celular Tumoral , Nanopartículas/química
6.
Food Res Int ; 173(Pt 1): 113325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803636

RESUMEN

The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.


Asunto(s)
Curcumina , Salmo salar , Animales , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , Curcumina/farmacología , Curcumina/metabolismo , Alimentos Marinos/análisis , Bacterias/metabolismo
7.
Int J Med Mushrooms ; 25(10): 49-64, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37830196

RESUMEN

Inonotus obliquus is a medicinal mushroom that contains the valuable I. obliquus polysaccharides (IOP), which is known for its bioactive properties. Studies have shown that IOP could inhibit oxidative stress induced premature aging and DNA damage, and delay body aging. However, the molecular mechanism of IOP in improving skin photoaging remains unclear, which prevents the development and utilization of I. obliquus in the field of skin care. In this study, ultraviolet B (UVB) induced human immortalized keratinocyte (HaCaT) cell photoaging model was used to explore the mechanism of IOP in relieving skin photoaging. Results showed that IOP inhibited cell senescence and apoptosis by reducing the protein expressions of p16, p21, and p53. IOP increased HO-1, SOD, and CAT expressions to achieve Nrf2/HO-1 pathway, thus improving antioxidant effects and preventing ROS generation. Furthermore, IOP enhanced the expression levels of p-AMPK, LC3B, and Beclin-1 to alleviate the autophagy inhibition in UVB-induced HaCaT cells. Based on these findings, our data suggested that IOP may be used to develop effective natural anti-photoaging ingredients to promote skin health.


Asunto(s)
Agaricales , Basidiomycota , Envejecimiento de la Piel , Humanos , Factor 2 Relacionado con NF-E2/genética , Polisacáridos , Autofagia , Rayos Ultravioleta/efectos adversos
8.
Maturitas ; 178: 107848, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37757613

RESUMEN

OBJECTIVES: To assess the associations of both the level of circulating vitamin D and the ratio of omega-3 fatty acids to total fatty acids (omega-3 %) with mortality among participants with rheumatoid arthritis. STUDY DESIGN: This study included 4,293 and 1,157 adults with rheumatoid arthritis identified by self-report from the UK Biobank for the analysis of vitamin D and omega-3 %, respectively. MAIN OUTCOME MEASURES: Death outcomes were obtained from the National Health Service Information Centre (England and Wales) and the National Health Service Central Register Scotland (Scotland). Cox proportional hazards models were used to estimate hazard ratios and 95 % confidence intervals for mortality. RESULTS: The medians (25th-75th percentiles) of serum 25(OH)D and omega-3 % were 45.8 (31.4-62.9) nmol/L and 4.1 % (3.3 %-5.1 %), respectively. During 52,612 person-years of follow-up in the 25(OH)D group, 502 all-cause deaths occurred; and during 14,192 person-years of follow-up in the omega-3 % group, 122 all-cause deaths occurred. Rheumatoid arthritis patients with vitamin D levels of at least 20 nmol/L had an approximately 40-50 % lower risk of all-cause mortality than those with severe vitamin D deficiency (hazard ratio ranging from 0.51 to 0.62, all P values < 0.05). Each unit increase in natural log-transformed 25(OH)D was associated with a 22 % reduction in the risk of all-cause mortality, and a U-shaped association between serum 25(OH)D and all-cause mortality was found. However, the association between omega-3 % and mortality was not significant. CONCLUSIONS: Lower serum 25(OH)D concentration, but not omega-3 %, was significantly associated with higher all-cause mortality in patients with rheumatoid arthritis. Optimizing serum vitamin D levels may be an important factor in reducing mortality risk in this population.


Asunto(s)
Artritis Reumatoide , Ácidos Grasos Omega-3 , Deficiencia de Vitamina D , Humanos , Vitamina D , Estudios de Cohortes , Medicina Estatal , Vitaminas , Deficiencia de Vitamina D/complicaciones
9.
Pharm Biol ; 61(1): 1387-1400, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37655754

RESUMEN

CONTEXT: di-(2-Ethylhexyl) phthalate (DEHP) has potential reproductive toxicity. Bu-Shen-Tian-Jing formulations (BSTJFs) are beneficial for female reproductive capacity. However, BSTJF2 has much lower cytotoxicity than BSTJF1. OBJECTIVE: To investigate the effects of BSTJFs on ovarian granulosa cells exposed to DEHP and determine the potential molecular mechanisms. METHODS AND MATERIALS: Human granulosa-like tumor cell line (KGN) cells were divided into control, DEHP, BSTJF1 and BSTJF2 groups. The DEHP group were given 1 µM DEHP for 24 h. They were then given BSTJF1 at 200 µg/mL or BSTJF2 at 100 µg/mL for 24 h. The control group was treated with the same concentration of DMSO (0.1%). Oxidative stress and mitochondrial function were measured. The mRNA and protein expression levels of HDAC3 and HSP90AA were determined. Integrative network pharmacology analysis of BSTJF2 was also performed. RESULTS: DEHP (1 µM) significantly suppressed the proliferation of KGN cells by 17%, significantly increased ROS levels by 28% and MDA levels by 47%, significantly decreased MMP levels by 22% and mtDNA copy by 30%. DEHP significantly increased protein expression of HDAC3 by 21%and HSP90AA by 64%. All these changes were significantly reversed by BSTJFs. Integrative network pharmacology analysis revealed HSP90AA was a key target (degree = 8). Both RGFP966 and BSTJF2 significantly reversed the increased expression of HDAC3 and HSP90AA, attenuated oxidative stress, and mitochondrial damage which were induced by DEHP. CONCLUSION: BSTJFs might have therapeutic potential on oxidative stress and mitochondrial damage through the HDAC3/HSP90AA pathway which encourages further clinical trials.


Asunto(s)
Dietilhexil Ftalato , Humanos , Femenino , Estrés Oxidativo , Células de la Granulosa , Busulfano , Línea Celular Tumoral
10.
J Ethnopharmacol ; 317: 116746, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37295572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urban (CA) is a dry herb of the Umbelliferae family, first mentioned in Shennong's Herbal Classic. It is known for its ability to clear heat and dampness, detoxify, and reduce swelling, making it a popular treatment for dermatitis, wound healing, and lupus erythematosus. Psoriasis is a chronic inflammatory skin disease that is characterized by clearly delineated erythema and squamous skin lesions. However, the effect of CA on regulating inflammation and its mechanism in the pathogenesis of psoriasis is still not fully understood. AIM OF THE STUDY: This study evaluated the effects of CA on inflammatory dermatosis by in vitro and in vivo studies. And clarified the important role of the JAK/STAT3 signaling pathway in the treatment of psoriasis with CA. METHODS AND MATERIALS: Different components of CA were extracted and analyzed for their total flavonoid and polyphenol contents. The antioxidant capacity of the CA extracts was determined using DPPH, ABTS, and FRAP methods. In vitro, HaCaT cells were induced by lipopolysaccharide (LPS, 20 µg·mL-1) to establish an inflammatory injury model, and the effects of CA extracts on oxidative stress, inflammation and skin barrier function were evaluated systematically. Annexin V-FITC/PI staining was utilized for detecting cell apoptosis, while the expression of NF-κB and JAK/STAT3 pathways were detected by RT-PCR and western blot. Combined with an in vivo mice model of Imiquimod (IMQ) induced psoriasis-like skin inflammation, the most effective CA extract for alleviating psoriasis was identified and its potential mechanism was investigated. RESULTS: CA extracts showed high antioxidant capacity and were able to increase the content of GSH and SOD while reducing intracellular ROS generation. Notably, CA ethyl acetate extract (CAE) was found to be the most effective. Furthermore, CA extracts effectively downregulate inflammatory factors (IFN-γ, CCL20, IL-6 and TNF-α) mRNA levels and improved the gene expressions of barrier protective factors AQP3 and FLG, among them CAE and n-hexane extract of CA (CAH) had better effects. Western blot analysis indicated that CAE and CAH had anti-inflammatory effects by inhibiting the activation of NF-κB and JAK/STAT3 pathways, and CAE exhibited the best regulatory effect at the dose of 25 µg·mL-1. In vivo experiment, the psoriasis-like skin inflammation mice model was established by 5% IMQ and treated CAE solution (10, 20, 40 mg·mL-1) for 7 days, the results showed that CAE intervention reduced the skin scale and blood scab, and significantly inhibited the secretion of inflammatory factors in both serum and skin lesions at the dose of 40 mg·mL-1. CONCLUSION: Centella asiatica extracts were effective in improving skin inflammation and skin barrier dysfunction, and also alleviated psoriasis through JAK/STAT3 pathway. The results provided experimental support for the potential use of Centella asiatica in functional food and skin care products.


Asunto(s)
Centella , Dermatitis , Psoriasis , Ratones , Animales , FN-kappa B/metabolismo , Antioxidantes/farmacología , Centella/química , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Piel , Imiquimod , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
11.
Biomater Sci ; 11(13): 4549-4556, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37159049

RESUMEN

As an emerging anti-tumor strategy, chemodynamic therapy (CDT) utilizes a Fenton/Fenton-like reaction to generate highly toxic hydroxyl radicals to kill tumor cells. However, the efficiency of CDT is still hindered by the low Fenton/Fenton-like reaction rate. Herein, we report the combination of ion interference therapy (IIT) and chemodynamic therapy (CDT) via an amorphous iron oxide (AIO) nanomedicine with encapsulated EDTA-2Na (EDTA). Iron ions and EDTA are released from the nanomedicine in acidic tumors and chelate to form iron ion-EDTA, which improves the efficiency of CDT and promotes the generation of reactive oxygen species (ROS). In addition, EDTA can disrupt the homeostasis of Ca2+ in tumor cells by chelating with Ca2+ ions, which induces the separation of tumor cells and affects normal physiological activities. Both in vitro and in vivo experiments show that the nano chelating drugs exhibit significant improvement in Fenton reaction performance and excellent anti-tumor activity. This study based on chelation provides a new idea for designing efficient catalysts to enhance the Fenton reaction and provides more revelations on future research on CDT.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Ácido Edético/uso terapéutico , Neoplasias/tratamiento farmacológico , Radical Hidroxilo/uso terapéutico , Nanopartículas/uso terapéutico , Hierro , Línea Celular Tumoral , Peróxido de Hidrógeno , Microambiente Tumoral
12.
Foods ; 12(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37107507

RESUMEN

(1) Objective: This study aimed to assess the effects of dietary casein phosphopeptide (CPP) supplementation on the egg production performance of late laying hens and the resulting egg quality and eggshell ultrastructure. (2) Methods: A total of 800 laying hens aged 58 weeks were randomly assigned into 5 groups with 8 replicates of 20 hens each. The hens were fed a basal diet supplemented with 0 (control, T1), 0.5 (T2), 1.0 (T3), 1.5 (T4), and 2.0 (T5) g/kg CPP for 9 weeks. (3) Results: Dietary CPP supplementation was found to be beneficial for improving eggshell quality. The spoiled egg rate of the experimental groups was lower than that of the control group (linear and quadratic effect, p < 0.05). The yolk color in the T2, T3, and T4 groups was higher than that in the T1 group (quadratic effect, p < 0.05). The shell thickness in the T4 group was higher than that in the T1 and T2 groups (linear effect, p < 0.05). The shell color in the experimental groups was higher than that in the control group (linear and quadratic effect, p < 0.05). The effective thickness in the T3-T5 groups (linear and quadratic, p < 0.05) and the number of papillary nodes in the T2 and T3 groups were higher than those in the T1 group (quadratic, p < 0.05). The calcium content in the T2 and T3 groups was higher than that in the T1 group (quadratic effect, p < 0.05). The iron content in the T2 and T3 groups was higher than that in the T1 group (p < 0.05). (4) Conclusion: In summary, 0.5-1.0 g/kg CPP supplementation reduced the spoiled egg rate, enhanced the yolk and eggshell colors, increased the thickness of the effective layer, and the calcium and iron contents in the eggshell.

13.
Small ; 19(29): e2300370, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029698

RESUMEN

Ion-interference therapy (IIT) utilizes ions to disturb intracellular biological processes and has been received increasing attention in tumor treatments recently. However, the low therapeutic efficiency still hinders its further biological applications. Herein, via a simple and one-pot gas diffusion process, polyethylene glycol (PEG)-modified Mn2+ ions and usnic acid (UA)-incorporated CaCO3 nanomaterials (PEG CaMnUA) as Ca2+ /Mn2+ ions reservoirs are prepared for magnetic resonance imaging (MRI)-guided UA-elevated IIT. Among PEG CaMnUA, UA not only increases cytoplasmic Ca2+ ions to amplify Ca2+ overload caused by CaCO3 decomposition, but also enhances Mn2+ ions-participated Fenton-like biocatalysis by intracellular H2 O2 generation and glutathione consumption. Then increasing the intracellular oxidative stress and decreasing the triphosadenine supply induce apoptosis together, resulting in UA-boosted IIT. The simple and efficient design of the dual ions reservoirs will contribute to improve the antitumor activity of IIT and further development of calcium-based nanomaterials in the future.


Asunto(s)
Nanopartículas , Neoplasias , Usnea , Biocatálisis , Línea Celular Tumoral , Iones , Imagen por Resonancia Magnética/métodos , Polietilenglicoles
14.
J Am Chem Soc ; 145(13): 7205-7217, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958054

RESUMEN

The desirable curative effect in clinical immunotherapy has been challenging due to the immunosuppressive tumor microenvironment (TME) with high lactic acid (LA) metabolism in solid tumors. Although targeting metabolic reprogramming of tumor cells can restore the survival and function of immune cells in the TME, it is also plagued by insufficient immunogenicity. Herein, an activatable immunomodulatory nanoadjuvant CuSe/CoSe2@syrosingopine (CSC@Syro) is constructed for simultaneously relieving immunosuppressive TME and boosting tumor immune response. Specifically, CuSe/CoSe2 (CSC) exhibits TME-activated glutathione (GSH) depletion and hydroxyl radical (•OH) generation for potential ferroptosis. Meanwhile, the remarkable photothermal conversion efficiency and elevated photocatalytic ROS level both promote CSC heterostructures to induce robust immunogenic cell death (ICD). Besides, the loaded syrosingopine inhibitor achieves LA metabolism blockade in cancer cells by downregulating the expression of monocarboxylate transporter 4 (MCT4), which could sensitize ferroptosis by intracellular milieu acidification and neutralize the acidic TME to alleviate immunosuppression. Hence, advanced metabolic modulation confers the potentiated immune infiltration of ICD-stimulated T lymphocytes and further reinforces antitumor therapy. In brief, CSC@Syro-mediated synergistic therapy could elicit potent immunogenicity and suppress tumor proliferation and metastasis effectually by integrating the tumor metabolic regulation and ferroptosis with immunotherapy.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Ácido Láctico , Inmunoterapia , Transporte Biológico , Fototerapia , Glutatión , Línea Celular Tumoral , Microambiente Tumoral
15.
Adv Healthc Mater ; 12(20): e2300012, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929147

RESUMEN

The development of nanomedicines that combine photothermal therapy (PTT) with photodynamic therapy (PDT) is considered promising for cancer treatment, but still faces the challenge of enhancing tumoricidal efficiency. Fortunately, apart from the well-acknowledged effect on direct tumor cell-killing, nitric oxide (NO) is also considered to be effective for the enhancement of both PTT and PDT. However, both the low loading efficiency of NO precursor and the short half-life time and diffusion distance of NO hamper the synergistic therapeutic efficacy of NO. Taking the aforementioned factors into account, a mitochondria-targeted nitric oxide nanogenerator, EArgFe@Ce6, is constructed to achieve high loading of the NO donor l-Arginine (l-Arg) for synergistic photodynamic/gas/photothermal therapy upon single 660 nm light irradiation. The coordination of epigallocatechin gallate (EGCG) and ferric ions (Fe3+ ) provides EArgFe@Ce6 supreme photothermal capability to perform low-temperature PTT (mPTT). EGCG endows EArgFe@Ce6 with mitochondria-targeting capability and meanwhile favors hypoxia alleviation for enhanced PDT. The PDT-produced massive reactive oxygen species (ROS) further catalyzes l-Arg to generate a considerable amount of NO to perform gas therapy and sensitize both mPTT and PDT. In vitro and in vivo studies demonstrate that the synergistic photodynamic/gas/photothermal therapy triggered by single 660 nm light irradiation is highly effective for tumor treatments.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Óxido Nítrico , Terapia Fototérmica , Fototerapia , Línea Celular Tumoral
16.
Small ; 19(10): e2206423, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36567272

RESUMEN

The outcome of laser-triggered plasmons-induced phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is significantly limited by the hypoxic tumor microenvironment and the upregulation of heat shock proteins (HSPs) in response to heat stress. Mitochondria, the biological battery of cells, can serve as an important breakthrough to overcome these obstacles. Herein, dendritic triangular pyramidal plasmonic CuPt alloys loaded with heat-sensitive NO donor N, N'-di-sec-butyl-N, N'-dinitroso-1,4-phenylenediamine (BNN) is developed. Under 808 nm laser irradiation, plasmonic CuPt can generate superoxide anion free radicals (·O2 - ) and heat simultaneously. The heat generated can then trigger the release of NO gas, which not only enables gas therapy but also damages the mitochondrial respiratory chain. Impaired mitochondrial respiration leads to reduced oxygen consumption and insufficient intracellular ATP supply, which effectively alleviates tumor hypoxia and undermines the synthesis of HSPs, in turn boosting plasmonic CuPt-based PDT and mild PTT. Additionally, the generated NO and ·O2 - can react to form more cytotoxic peroxynitrite (ONOO- ). This work describes a plasmonic CuPt@BNN (CPB) triggered closed-loop NO gas, free radicals, and mild photothermal therapy strategy that is highly effective at reciprocally promoting antitumor outcomes.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Neoplasias/terapia , Línea Celular Tumoral , Microambiente Tumoral
17.
Chin J Nat Med ; 20(12): 937-947, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36549807

RESUMEN

This study was designed to investigate the effects of five Rutaceae family ethanol extracts (FRFEE): Citrus medica Linn (CML), Citrus aurantium L. Cv. Daidai (CAD), Citrus medica Linn. var. sarcodactylis (Noot.) Swingle (CMS),Citrus sinensis L. Osbeck (CSO) and Zanthoxylum bungeanum Maxim (ZBM) on retarding the progression of H2O2 and LPS-induced HaCaT cells. Cell inflammatory injury model was established by H2O2 and LPS. The alleviative effects of FRFEE were evaluated by detecting the activity of superoxide dismutase (SOD), glutathione (GSH) and the generation of reactive oxygen species (ROS). The inflammatory signaling pathways of NF-κB and JAK-STAT3 were detected by Western blotting, the mRNA expression levels of inflammatory factors and skin barrier factors were detected by RT-PCR. 50% ethanol extracts of five medicinal and food homologous herbs of Rutaceae family showed different levels of anti-oxidant and anti-inflammatory activities. The FRFEE effectively improved SOD and GSH content and decreased ROS levels. Meanwhile, FRFEE strongly suppressed two inflammatory signaling pathways NF-κB and JAK-STAT3. The RT-PCR examination of inflammatory factors and skin barrier factor revealed significant anti-inflammatory effects of FRFEE. It was worth noting that among the five extracts, Zanthoxylum bungeanum Maxim extract had the best anti-inflammatory and anti-oxidation effects. In addition, it could strongly inhibit the expression of psoriasis factor CCL20. In summary, these results suggested that Zanthoxylum bungeanum Maxim extract could be used as an anti-psoriatic agent in the treatment of psoriasis among FRFEE.


Asunto(s)
Psoriasis , Rutaceae , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Peróxido de Hidrógeno , Etanol , Especies Reactivas de Oxígeno/metabolismo , Células HaCaT/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Superóxido Dismutasa
18.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5434-5442, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471957

RESUMEN

Galli Gigerii Endothelium Corneum(GGEC) is commonly used for the clinical treatment of indigestion, vomiting, diarrhea, and infantile malnutrition with accumulation. In recent decades, omnivorous domestic chickens, the original source of GGEC, has been replaced by broilers, which may lead to significant changes in the quality of the yielding GGEC. Through subjective and objective sensory evaluation, biological evaluation, and chemical analysis, this study compared the odor and quality between GGEC derived from domestic chickens and that from broilers. The odor intensity between them was compared by odor profile analysis and it was found that the fishy odor of GGEC derived from domestic chickens was significantly weaker than that of GGEC from broilers. Headspace-solid phase microextraction-gas chromatography-triple quadrupole tandem mass spectrometry(HS-SPME/GC-QQQ-MS/MS) suggested that the overall odor-causing chemicals were consistent with the fishy odor-causing chemicals. According to the odor activity va-lue and the orthogonal partial least squares discriminant analysis(OPLS-DA) result, dimethyl trisulfide, 2-methoxy-3-isobutylpyrazine, and 2-methylisoborneol were responsible for the fishy odor(OAV≥1) and the content of fishy odor-causing chemicals in GGEC derived from broilers was 1.12-2.13 folds that in GGEC from domestic chickens. The average pepsin potency in GGEC derived from broilers was 15.679 U·mg~(-1), and the corresponding figure for the medicinal from domestic chickens was 26.529 U·mg~(-1). The results of pre-column derivatization reverse-phase high-performance liquid chromatography(RP-HPLC) assay showed that the content of total amino acids and digestion-promoting amino acids in domestic chickens-derived GGEC was 1.12 times and 1.15 times that in GGEC from broilers, and the bitter amino acid content was 1.21 times folds that of the latter. In conclusion, GGEC derived from domestic chickens had weaker fishy odor, stronger enzyme activity, higher content of digestion-promoting amino acids, and stronger bitter taste than GGEC from broilers. This study lays a scientific basis for studying the quality variation of GGEC and provides a method for identifying high-quality GGEC. Therefore, it is of great significance for the development and cultivation of GGEC as both food and medicine and breeding of corresponding varieties.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Animales , Odorantes/análisis , Pollos , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas en Tándem , Microextracción en Fase Sólida , Aminoácidos , Endotelio/química , Compuestos Orgánicos Volátiles/análisis
19.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5452-5459, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471959

RESUMEN

Despite the distinctive characteristics and remarkable efficacy, animal medicine is stenchy, which decreases the comp-liance of patients. At the moment, the research on the method for deodorizing animal medicines lags behind. To be specific, the components related to the odor and the basic properties transformation of the components are unclear and there is a lack of specific deodorizing method. This study aims to clarify the main components related to the stench of animal medicine, such as aldehydes, amines, trimethylamines and sulfur compounds, and their basic properties, and to explore their metabolism and transformation in vivo and in vitro, which is expected to serve as a reference for the research on deodorization of animal medicine and development of new techniques.


Asunto(s)
Aldehídos , Odorantes , Animales
20.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5443-5451, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471958

RESUMEN

Taste is one of the important factors in the design of oral drug preparations. Polyphenols are the secondary metabolites produced in the growth process of Chinese medicine with a variety of physiological activities. However, astringency perceived from polyphenols tastes uncomfortable. As one of the true taste of Chinese medicine, astringency with drying, rough, and wrinkled sensation, seriously affects the texture of Chinese medicine and the compliance of patients. Due to the universality of polyphenolic astringency in Chinese medicine and the weakness of modern research, this study systematically reviewed and summarized the latest research on the mechanism of polyphenolic astringency, the astringency evaluation method, and the astringency-mitigation technology. Through comprehensively analyzing the quantification methods, such as sensory evaluation, animal preference evaluation, chemical evaluation, bionic evaluation, and polyphenol-protein interaction evaluation, the direction of overall astringency assessment with "unified dimension" was proposed. Since the characteristics of Chinese medicine and the mechanism of polyphenolic astringency did not reach a consensus, this study proposed the idea of astringency mitigation suitable for Chinese medicine. This study is intended to deepen the understanding of astringency associated with Chinese medicine, and establish a real and objective astringency evaluation method for Chinese medicine, thus promoting the technique of astringency mitigation of polyphenolic Chinese medicine preparations from trial and error to science.


Asunto(s)
Astringentes , Medicina Tradicional China , Animales , Gusto , Polifenoles , Sensación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA