Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889404

RESUMEN

Melissa officinalis (MO), known as lemon balm, is a popular ingredient blended in herbal tea. In recent decades, the bioactivities of MO have been studied in sub-health and pathological status, highlighting MO possesses multiple pharmacological effects. We previously showed that hot water MO extract exhibited anticancer activity in colorectal cancer (CRC). However, the detailed mechanisms underlying MO-induced cell death remain elusive. To elucidate the anticancer regulation of MO extract in colon cancer, a data-driven analysis by proteomics approaches and bioinformatics analysis was applied. An isobaric tandem mass tags-based quantitative proteome analysis using liquid chromatography-coupled tandem mass spectrometry was performed to acquire proteome-wide expression data. The over-representation analysis and functional class scoring method were implemented to interpret the MO-induced biological regulations. In total, 3465 quantifiable proteoforms were identified from 24,348 peptides, with 67 upregulated and 54 downregulated proteins in the MO-treated group. Mechanistically, MO impeded mitochondrial respiratory electron transport by triggering a reactive oxygen species (ROS)-mediated oxidative stress response. MO hindered the mitochondrial membrane potential by reducing the protein expression in the electron transport chain, specifically the complex I and II, which could be restored by ROS scavenger. The findings comprehensively elucidate how MO hot water extract activates antitumor effects in colorectal cancer (CRC) cells.


Asunto(s)
Neoplasias del Colon , Melissa , Mitocondrias , Extractos Vegetales , Neoplasias del Colon/tratamiento farmacológico , Humanos , Melissa/química , Mitocondrias/fisiología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteoma , Especies Reactivas de Oxígeno/metabolismo , Agua
2.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807238

RESUMEN

The antitumor effects of Coix lacryma-jobi L. var. ma-yuen Stapf. (adlay seed) ethanolic extract have been increasingly shown. This study aimed to investigate the beneficial effects of both the fractions and subfractions of adlay seed ethanolic extract on the human breast (MCF-7) and cervical (HeLa) cancer cell lines, as well as exploring their possible mechanisms of action. The ethanolic extracts were obtained from different parts of adlay seed, including AHE (adlay hull extract), ATE (adlay testa extract), ABE (adlay bran extract) and PAE (polished adlay extract). The results of a 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT) assay showed that AHE-Ea and ATE-Ea showed significant growth inhibitory effects in a dose-dependent manner. The results also showed that the AHE-Ea-K, AHE-Ea-L, ATE-Ea-E and ATE-Ea-F subfractions inhibited cell proliferation, induced cell cycle arrest in the G0/G1 phase and decreased CDK4/Cyclin D1 protein expression. Finally, the extract activated caspase-3 activity and PARP protein expression, which induced MCF-7 and HeLa cell apoptosis. We then used liquid chromatography-mass spectrometry (LC/MS) to identify the potential active components., Quercetin showed an anticancer capacity. In conclusion, the AHE-Ea-K, AHE-Ea-L, ATE-Ea-E and ATE-Ea-F subfractions showed antitumor effects through the inhibition of MCF-7 and HeLa cell line viability, as well as inducing apoptosis and cell cycle arrest.


Asunto(s)
Coix , Neoplasias del Cuello Uterino , Apoptosis , Puntos de Control del Ciclo Celular , Coix/química , Etanol/farmacología , Femenino , Células HeLa , Humanos , Extractos Vegetales/química , Semillas/química , Neoplasias del Cuello Uterino/tratamiento farmacológico
3.
Mar Drugs ; 16(8)2018 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-30060617

RESUMEN

Marine sponges are known to produce numerous bioactive secondary metabolites as defense strategies to avoid predation. Manzamine A is a sponge-derived ß-carboline-fused pentacyclic alkaloid with various bioactivities, including recently reported anticancer activity on pancreatic cancer. However, its cytotoxicity and mode of action against other tumors remain unclear. In this study, we exhibit that manzamine A reduced cell proliferation in several colorectal cancer (CRC) cell lines. To further investigate the manzamine A triggered molecular regulation, we analyzed the gene expression with microarray and revealed that pathways including cell cycle, DNA repair, mRNA metabolism, and apoptosis were dysregulated. We verified that manzamine A induced cell cycle arrest at G0/G1 phase via inhibition of cyclin-dependent kinases by p53/p21/p27 and triggered a caspase-dependent apoptotic cell death through mitochondrial membrane potential depletion. Additionally, we performed bioinformatics analysis and demonstrated that manzamine A abolished epithelial⁻mesenchymal transition process. Several mesenchymal transcriptional factors, such as Snail, Slug, and Twist were suppressed and epithelial marker E-cadherin was induced simultaneously in HCT116 cells by manzamine A, leading to the epithelial-like phenotype and suppression of migration. These findings suggest that manzamine A may serve as a starting point for the development of an anticancer drug for the treatment of metastatic CRC.


Asunto(s)
Antineoplásicos/farmacología , Carbazoles/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Poríferos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carbazoles/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Evaluación Preclínica de Medicamentos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
Molecules ; 17(6): 6277-89, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22634839

RESUMEN

Cantharidin, an active component in mylabris, is used in traditional Chinese medicine (TCM) to treat scabies and hepatoma, but accompanied by hemorrhagic cystitis. Evidence shows that cantharidin induces human bladder carcinoma cell death through COX-2 overexpression in vitro. In TCM, Scutellaria baicalensis is usually used to cure mylabris-induced hematuria. This work was undertaken to determine the mechanisms of cantharidin-induced rat hemorrhagic cystitis and explore the uroprotective effect of S. baicalensis. In vitro results showed cantharidin could induce cytotoxicity through prostaglandin (PG)E2 overproduction of T24 cells. Boiling-water extract of S. baicalensis (SB-WE) could significantly inhibit PGE2 production and COX-2 expression in lipo-polysaccharide-induced RAW 264.7 cells, indicating obvious anti-inflammatory abilities. In vivo results indicated that cantharidin caused rat hemorrhagic cystitis with hematuria via c-Fos and COX-2 overexpression. SB-WE was given orally to cantharidin-treated rats, whereby hematuria level, elevated PGE2 and COX-2 protein overexpression were significantly and dose-dependently inhibited by SB-WE. The anti-inflammatory components of SB-WE are baicalin and wogonin, whose contents were 200.95 ± 2.00 and 31.93 ± 0.26 µg/mg, respectively. In conclusion, cantharidin induces rat cystitis through c-Fos and COX-2 over-expression and S. baicalensis can prevent the resulting hematuria because of its anti-inflammatory effects.


Asunto(s)
Cantaridina/toxicidad , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Ciclooxigenasa 2/metabolismo , Cistitis/tratamiento farmacológico , Hemorragia/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Scutellaria baicalensis/química , Animales , Cantaridina/química , Muerte Celular , Línea Celular , Ciclooxigenasa 2/genética , Cistitis/inducido químicamente , Femenino , Expresión Génica , Hemorragia/inducido químicamente , Humanos , Medicina Tradicional China , Ratones , Control de Calidad , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA