RESUMEN
BACKGROUND AND AIM: Most consensuses recommend culture-guided therapy as third-line Helicobacter pylori treatment. This study aimed to investigate the efficacies of culture-guided therapy and empirical therapy with high-dose proton pump inhibitor (PPI) in the H. pylori third-line treatment. METHODS: Between August 2012 and October 2021, H. pylori-infected patients with at least two failed eradication attempts received anti-H. pylori therapy according to the results of antimicrobial sensitivity tests plus high-dose rabeprazole and/or bismuth. They were categorized into three groups: patients who had positive results of culture with equal to or more than three susceptible antibiotics were treated by culture-guided non-bismuth quadruple therapy, patients who had positive results of culture with one or two susceptible antibiotics were treated by culture-guided bismuth-containing therapy, and patients who had a negative result of culture were treated by an empirical therapy with high-dose rabeprazole plus amoxicillin, tetracycline and levofloxacin. A post-treatment assessment was conducted at week 8. RESULTS: We recruited 126 patients. The eradication rates of culture-guided non-bismuth quadruple therapy (n = 50), culture-guided bismuth-containing therapy (n = 46) and empirical therapy (n = 30) were 84.0%, 87.0%, and 66.7% (95% confidence interval: 73.8-94.2%, 77.3-96.7%, and 49.8-83.6%), respectively. Overall, culture-guided therapy achieved a higher eradication rate than empirical therapy (85.4% vs 66.7%; 95% confidence interval, 0.4% to 37.0%, P = 0.022). CONCLUSIONS: Culture-guided therapy with high-dose PPI achieves a higher eradication rate than empirical therapy with high-dose PPI in the third-line treatment of H. pylori infection. The eradication rate of rescue therapy with bismuth plus two susceptible antibiotics is not inferior to that with three susceptible antibiotics.
Asunto(s)
Antiinfecciosos , Infecciones por Helicobacter , Helicobacter pylori , Amoxicilina , Antibacterianos , Bismuto , Quimioterapia Combinada , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Levofloxacino , Inhibidores de la Bomba de Protones , Rabeprazol/uso terapéutico , Tetraciclina , Resultado del TratamientoRESUMEN
Multiple sclerosis (MS) is a chronic autoimmune disease mainly caused by autoreactive T cells, followed by neuronal demyelination and disabling paralysis. Hyperbaric oxygen therapy (HBOT) is usually an adjunct to therapy for the treatment of neurological disorders. However, it remains still controversial whether HBOT is an effective option for the treatment of MS. Experimental autoimmune encephalomyelitis (EAE) is a well-studied mouse model investigated for the MS pathogenesis and the efficacy of the therapeutic intervention. Both encephalitogenic Th1 and Th17 are pivotal T cell subsets immunopathogenically producing several disease-initiating/modifying cytokines in the central nervous system (CNS) lesions to further exacerbate/ameliorate the progression of EAE or MS. However, it remains unclear whether HBOT modulates the context of T helper cell subsets in CNS lesions. We employed EAE in the presence of HBOT to assess whether disease amelioration is attributed to alterations of CNS-infiltrating T cell subsets. Our results demonstrated that semi-therapeutic HBOT significantly alleviated the progression of EAE, at least, via the suppression of Th17 response, the downregulation of CD4 T helper cells expressing GM-CSF or TNF-α, and the boosting of immunomodulatory IL-4 or IL-10-expressed CD4 T cells in the CNS lesions. Conclusively, HBOT attenuated EAE through the modulation of T cell responses in an earlier stage.
RESUMEN
Glucosamine has immunomodulatory effects on autoimmune diseases. However, the mechanism(s) through which glucosamine modulates different T cell subsets and diseases remain unclear. We demonstrate that glucosamine impedes Th1, Th2, and iTreg but promotes Th17 differentiation through down-regulating N-linked glycosylation of CD25 and subsequently inhibiting its downstream Stat5 signaling in a dose-dependent manner. The effect of glucosamine on T helper cell differentiation was similar to that induced by anti-IL-2 treatment, further supporting an IL-2 signaling-dependent modulation. Interestingly, excess glucose rescued this glucosamine-mediated regulation, suggesting a functional competition between glucose and glucosamine. High-dose glucosamine significantly decreased Glut1 N-glycosylation in Th1-polarized cells. This finding suggests that both down-regulated IL-2 signaling and Glut1-dependent glycolytic metabolism contribute to the inhibition of Th1 differentiation by glucosamine. Finally, glucosamine treatment inhibited Th1 cells in vivo, prolonged the survival of islet grafts in diabetic recipients, and exacerbated the severity of EAE. Taken together, our results indicate that glucosamine interferes with N-glycosylation of CD25, and thereby attenuates IL-2 downstream signaling. These effects suggest that glucosamine may be an important modulator of T cell differentiation and immune homeostasis.
Asunto(s)
Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Glucosamina/química , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Regulación hacia Abajo , Femenino , Transportador de Glucosa de Tipo 1/metabolismo , Glicosilación , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Transducción de Señal , Células TH1/citología , Células Th17/citología , Células Th2/citologíaRESUMEN
OBJECTIVE: The soluble preligand assembly domain (PLAD) of tumour necrosis factor receptor 1 (TNFR1) interferes with receptor trimerisation to block downstream signalling, and mediates Th17 suppression. We explored the therapeutic potential of recombinant PLAD.Fc protein on a spontaneous experimental colitis. DESIGN: A T-cell-specific BLIMP-1 knockout mouse model with mixed Th1/Th17 responses, resembling human Crohn's disease (CD) was established, and its colitogenic phenotype was characterised. Mice, 9 weeks old, were treated with PLAD.Fc protein at 5â mg/kg of body weight twice per week for 16â weeks, and presence of colitis was monitored by the appearance of diarrhoea, weight loss, and by histological colonic scoring. Activation status, cytokine profiles, and transcription factors in T cells were further analysed. RESULTS: The colitogenic phenotype in BLIMP-1 knockout mice was alleviated when an interleukin (IL)-23 knockdown transgene was introduced, indicating a therapeutic potential by downregulating IL-23-Th17 axis in these knockout mice. In PLAD.Fc-treated group, the mouse body weight remained stable and only mild disease scores were revealed. The percentage of naive CD4 T cells was increased and that of effector/memory CD4 T cells was decreased after PLAD.Fc-treatment. Moreover, the levels of IFN-γ, IL-17, IL-21, IL-22, IL-23R, granulocyte-macrophage colony-stimulating factor (GM-CSF) and TNF-α were diminished. Strikingly, Th2-associated cytokines (IL-4, IL-13 and IL-10) in sera, as well as percentages of Th2 cells, were increased in PLAD.Fc-treated mice. However, PLAD.Fc-mediated suppression of effector phenotypes in Th1/Th17 was abrogated after neutralising IL-10. CONCLUSIONS: The Th2 cytokine milieu induced by PLAD.Fc rebalanced T-helper cell subsets and conferred a protection against colitis in BLIMP-1 knockout mice.