Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Biochem ; 44(12): e13530, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33084119

RESUMEN

In this study, the influence of in vitro gastrointestinal digestion on the Perilla frutescens leaf extract (PFLE) were measured. Results revealed that total phenolic content (TPC) and total flavonoid content (TFC) were significantly decreased after simulated digestion (ca. 53% of phenolics and 40% of flavonoids). The IC50 value of DPPH· scavenging activity and ABTS+ scavenging ability increased by 23% and 56%, respectively, while ferric reducing antioxidant power reduced by 53%. For the inhibition ability on α-glucosidase, acetylcholinesterase, and MCF-7 cell proliferation, their IC50 values increased by 360%, 197%, and 25%, respectively. Three phenolic acids and one flavonoid in PFLE were quantified by high-performance liquid chromatography. Overall, although significant losses of the active components and biological activities occurred during in vitro gastrointestinal digestion, it still showed the potential as an oral agent for treatment and prevention of oxidative stress, cancer, diabetes, and Alzheimer's disease. PRACTICAL APPLICATIONS: As an important annual herbaceous plant with rich biochemical compounds and many biological functions, Perilla frutescens leave is widely used in the food and traditional Chinese medicine. However, the dynamic changes of its active compounds and activities during the digestion process are unclear. In this study, the digestion results in significant loss of the active ingredients and biological activities of P. frutescens leaf extract (PFLE), particularly in the gastric digestion. In addition, PFLE remains to show certain antioxidant activity, α-glucosidase inhibitory ability, acetylcholinesterase inhibitory ability, and MCF-7 cell proliferation inhibitory ability after digestion. Therefore, this research might facilitate further research and development of P. frutescens.


Asunto(s)
Perilla frutescens , Antioxidantes/farmacología , Digestión , Flavonoides , Extractos Vegetales/farmacología
2.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2292-2307, 2019 Jun.
Artículo en Chino | MEDLINE | ID: mdl-31359656

RESUMEN

The present study is to establish a quantitative analysis of multi-components by single marker(QAMS) for determining contents of seven compositions in Alismatis Rhizoma, alismoxide, alisol C 23-acetate, alisol A, alismol, alisol B, alisol B 23-acetate and 11-deoxy-alisol B. Six relative correction factors(RCFs) of alismoxide, alisol C 23-acetate, alisol A, alismol, alisol B and 11-deoxy-alisol B were established in the UPLC method with alisol B 23-acetate as the internal standard, which was to calculate the mass fraction of each. The mass fraction of seven effective constituents in Alismatis Rhizoma was calculated by the external standard method(ESM) at the same time. Compared with the content results determined by the ESM and QAMS, the feasibility and accuracy of QAMS method were verified. Within the linear range, the RCFs of alismoxide, alisol C 23-acetate, alisol A, alismol, alisol B, 11-deoxy-alisol B were 0.946, 4.183, 0.915, 1.039, 0.923 and 1.244, respectively, with good repeatability in different experimental conditions. There was no significant difference between the QAMS method and ESM method. Then, QAMS method was applied to determination of the different degree Alismatis Rhizoma from different areas. As a result, the concentrations of 7 components have differences in different areas, but no significant differences in different grades. The QAMS method is feasible and accurate for the determination of the seven chemical compositions, and which can be used for quality control of Alismatis Rhizoma.


Asunto(s)
Alismatales/química , Medicamentos Herbarios Chinos/análisis , Fitoquímicos/análisis , Rizoma/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA