Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Oxid Med Cell Longev ; 2019: 9537504, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249652

RESUMEN

Wharton's jelly mesenchymal stem cells (WJMSCs) transfer healthy mitochondria to cells harboring a mitochondrial DNA (mtDNA) defect. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major subgroups of mitochondrial diseases, caused by the mt.3243A>G point mutation in the mitochondrial tRNALeu(UUR) gene. The specific aim of the study is to investigate whether WJMSCs exert therapeutic effect for mitochondrial dysfunction in cells of MELAS patient through donating healthy mitochondria. We herein demonstrate that WJMSCs transfer healthy mitochondria into rotenone-stressed fibroblasts of a MELAS patient, thereby eliminating mutation burden and rescuing mitochondrial functions. In the coculture system in vitro study, WJMSCs transferred healthy mitochondria to rotenone-stressed MELAS fibroblasts. By inhibiting actin polymerization to block tunneling nanotubes (TNTs), the WJMSC-conducted mitochondrial transfer was abrogated. After mitochondrial transfer, the mt.3243A>G mutation burden of MELAS fibroblasts was reduced to an undetectable level, with long-term retention. Sequencing results confirmed that the transferred mitochondria were donated from WJMSCs. Furthermore, mitochondrial transfer of WJMSCs to MELAS fibroblasts improves mitochondrial functions and cellular performance, including protein translation of respiratory complexes, ROS overexpression, mitochondrial membrane potential, mitochondrial morphology and bioenergetics, cell proliferation, mitochondrion-dependent viability, and apoptotic resistance. This study demonstrates that WJMSCs exert bioenergetic therapeutic effects through mitochondrial transfer. This finding paves the way for the development of innovative treatments for MELAS and other mitochondrial diseases.


Asunto(s)
Metabolismo Energético , Fibroblastos/trasplante , Síndrome MELAS/terapia , Células Madre Mesenquimatosas/citología , Mitocondrias/trasplante , Mutación , Rotenona/efectos adversos , Gelatina de Wharton/citología , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/metabolismo , Humanos , Síndrome MELAS/inducido químicamente , Síndrome MELAS/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Desacopladores/efectos adversos
2.
Oncotarget ; 8(45): 79680-79692, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-29108348

RESUMEN

Patients with migraine are reportedly at increased risk of developing dementia. We aimed to investigate the association between traditional Chinese medicine (TCM) use and dementia risk in migraine patients. This longitudinal cohort study used the Taiwanese National Health Insurance Research Database to identify 32,386 diagnosed migraine patients aged 20 years and above who received treatment from 1997 to 2010. To balance comparability between TCM users and non-TCM users, we randomly selected equal numbers from each group, and compared subgroups compiled based on combinations of age, sex, index year, and year of migraine diagnosis. All enrollees received follow-up until the end of 2013 to measure dementia incidence. We identified 1,402 TCM users and non-TCM users after frequency matching. A total of 134 subjects were newly diagnosed with dementia during the follow-up period. TCM users were significantly less likely to develop dementia than non-TCM users. The most frequently prescribed formulae and single Chinese herbal products were Jia-Wei-Xiao-Yao-San and Yan-Hu-Suo, respectively. This population-based study revealed a decreased dementia risk in migraine patients with TCM use. These findings may provide a reference for dementia prevention strategies, and help integrate TCM into clinical intervention programs that provide a favorable prognosis for migraine patients.

3.
Oxid Med Cell Longev ; 2017: 5691215, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28607632

RESUMEN

Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial disease affecting neuromuscular functions. Mt.8344A>G mutation in mitochondrial DNA (mtDNA) is the most common cause of MERRF syndrome and has been linked to an increase in reactive oxygen species (ROS) level and oxidative stress, as well as impaired mitochondrial bioenergetics. Here, we tested whether WJMSC has therapeutic potential for the treatment of MERRF syndrome through the transfer of mitochondria. The MERRF cybrid cells exhibited a high mt.8344A>G mutation ratio, enhanced ROS level and oxidative damage, impaired mitochondrial bioenergetics, defected mitochondria-dependent viability, exhibited an imbalance of mitochondrial dynamics, and are susceptible to apoptotic stress. Coculture experiments revealed that mitochondria were intercellularly conducted from the WJMSC to the MERRF cybrid. Furthermore, WJMSC transferred mitochondria exclusively to cells with defective mitochondria but not to cells with normal mitochondria. MERRF cybrid following WJMSC coculture (MF+WJ) demonstrated improvement of mt.8344A>G mutation ratio, ROS level, oxidative damage, mitochondrial bioenergetics, mitochondria-dependent viability, balance of mitochondrial dynamics, and resistance against apoptotic stress. WJMSC-derived mitochondrial transfer and its therapeutic effect were noted to be blocked by F-actin depolymerizing agent cytochalasin B. Collectively, the WJMSC ability to rescue cells with defective mitochondrial function through donating healthy mitochondria may lead to new insights into the development of more efficient strategies to treat diseases related to mitochondrial dysfunction.


Asunto(s)
Síndrome MERRF/genética , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Células Cultivadas , Metabolismo Energético , Humanos , Gelatina de Wharton
4.
Am J Chin Med ; 44(7): 1507-1523, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27776427

RESUMEN

Osteosarcoma is an aggressive bone cancer arising from primitive transformed cells of mesenchymal origin to form malignant osteoid. Phyllanthus urinaria [Formula: see text]P. urinaria[Formula: see text] is a widely used folk medicine in cancer treatment, however the mechanism of P. urinaria inhibited human osteosarcoma is unclear. The present study was aimed at investigating the antitumoral effects of an aqueous P. urinaria on human osteosarcoma in vivo and the related underlying mechanisms, mainly focusing on mitochondrial dynamic dysfunction. Our results showed that oral administration of P. urinaria to mice led to significant inhibition of tumor development without substantial changes to body weight or major organs. Histological examinations with H&E, Giemsa, and Masson trichrome stains confirmed inhibition of tumor growth by the P. urinaria treatment. Immunohistochemical staining of proliferation markers antigen KI-67 (Ki67) and proliferating cell nuclear antigen (PCNA), as well as a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated a decrease of tumor proliferation and an increase of apoptosis, which was associated with the modulation of B-cell lymphoma 2 (Bcl-2) family activating the caspase cascade in the P. urinaria-treated mice. The neovascularization marker cluster of differentiation 31 (CD31) was inhibited in P. urinaria-treated xenografts, implicating the potential anti-angiogenic effect of P. urinaria. P. urinaria treatment resulted in a significant decrease in the mitochondrial fusion proteins, including mitofusin 1/2 (Mfn1/2) and optic atrophy type 1 (Opa1), as well as an increase in the fission protein dynamin-related protein 1 (Drp1). The results of this study suggest mitochondrial dysfunction is associated with dynamic change that is involved in the apoptosis and anti-angiogenesis elicited by P. urinaria.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Osteonecrosis/genética , Osteonecrosis/patología , Osteosarcoma/genética , Osteosarcoma/patología , Phyllanthus/química , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Animales , ADN Nucleotidilexotransferasa/metabolismo , Xenoinjertos , Humanos , Antígeno Ki-67/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Extractos Vegetales/aislamiento & purificación , Antígeno Nuclear de Célula en Proliferación/metabolismo
5.
Mitochondrion ; 17: 22-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24836433

RESUMEN

Phyllanthus urinaria (P. urinaria), a widely used herbal medicine, has been reported to possess various biological characteristics including anti-inflammation, anti-virus, anti-bacteria, anti-hepatotoxicity and anti-cancer. This study provides molecular evidence associated with the dynamics and organization of mitochondria in osteosarcoma 143B cells resulted from P urinaria. Herein, P. urinaria-induced cytotoxicity and ROS associated with the inhibition of mitochondrial membrane potential were reversed by N-acetylcysteine (NAC). The endogenous antioxidant enzymes such as manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPX1) were activated by P. urinaria, but not correlated to catalase. P. urinaria decreased mitochondrial respiration activity as well as respiratory chain enzymes and HIF-1α in osteosarcoma 143B cells. Additionally, both adenosine triphosphate (ATP) synthase activation and ATP production were suppressed by P. urinaria. We further investigated changes of mitochondrial dynamic in osteosarcoma 143B cells. P. urinaria indeed fragmented the mitochondrial network of osteosarcoma 143B cells. We found a significant decrease in optic atrophy type 1 (Opa1) and mitofusin 1 (Mfn1) related to fusion proteins as well as increase mitochondrial fission 1 protein (Fis1) related to fission protein. It indicated that P. urinaria modulated the mitochondrial dynamics via fusion and fission machinery. Altogether, this study offers the evidence that mitochondrial dysfunction with dynamic change is essential components for the anti-cancer mechanism elicited by P. urinaria.


Asunto(s)
Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/análisis , Phyllanthus/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Mitocondrias/química , Extractos Vegetales/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-22454688

RESUMEN

Phyllanthus urinaria (P. urinaria), in this study, was used for the treatment of human osteosarcoma cells, which is one of the tough malignancies with few therapeutic modalities. Herein, we demonstrated that P. urinaria inhibited human osteosarcoma 143B cells growth through an apoptotic extrinsic pathway to activate Fas receptor/ligand expression. Both intracellular and mitochondrial reactive oxygen species were increased to lead to alterations of mitochondrial membrane permeability and Bcl-2 family including upregulation of Bid, tBid, and Bax and downregulation of Bcl-2. P. urinaria triggered an intrinsic pathway and amplified the caspase cascade to induce apoptosis of 143B cells. However, upregulation of both intracellular and mitochondrial reactive oxygen species and the sequential membrane potential change were less pronounced in the mitochondrial respiratory-defective 143Bρ(0) cells compared with the 143B cells. This study offers the evidence that mitochondria are essential for the anticancer mechanism induced by P. urinaria through both extrinsic and intrinsic pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA