Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552377

RESUMEN

BACKGROUND: Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE: This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD: 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 µM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS: We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPß, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION: EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Catequina , Dieta Alta en Grasa , Janus Quinasa 2 , Ratones Endogámicos C57BL , Factor de Transcripción STAT3 , Animales , Catequina/farmacología , Catequina/análogos & derivados , Ratones , Factor de Transcripción STAT3/metabolismo , Adipogénesis/efectos de los fármacos , Janus Quinasa 2/metabolismo , Adipocitos/efectos de los fármacos , Masculino , Mitosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Obesidad/tratamiento farmacológico , PPAR gamma/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
Phytomedicine ; 110: 154626, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36603342

RESUMEN

BACKGROUND: Ganoderma lucidum polysaccharide (GLP) has many biological properties, however, the anti-fibrosis effect of GLP is unknown at present. PURPOSE: This study aimed to examine the anti-fibrogenic effect of GLP and its underlying molecular mechanisms in vivo and in vitro. STUDY DESIGN: Both CCl4-induced mouse and TGF-ß1-induced HSC-T6 cellular models of fibrosis were established to examine the anti-fibrogenic effect of a water-soluble GLP (25 kDa) extracted from the sporoderm-removed spores of G. lucidum.. METHOD: Serum markers of liver injury, histology and fibrosis of liver tissues, and collagen formation were examined using an automatic biochemical analyzer, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, ELISA, Western blotting, and qRT-PCR. RNA-sequencing, enrichment pathway analysis, Western blotting, qRT-PCR, and flow cytometry were employed to identify the potential molecular targets and signaling pathways that are responsible for the anti-fibrotic effect of GLP. RESULTS: We showed that GLP (150 and 300 mg/kg) significantly inhibited hepatic fibrogenesis and inflammation in CCl4-treated mice as mediated by the TLR4/NF-κB/MyD88 signaling pathway. We further demonstrated that GLP significantly inhibited hepatic stellate cell (HSCs) activation in mice and in TGF-ß1-induced HSC-T6 cells as manifested by reduced collagen I and a-SMA expressions. RNA-sequencing uncovered inflammation, apoptosis, cell cycle, ECM-receptor interaction, TLR4/NF-κB, and TGF-ß/Smad signalings as major pathways suppressed by GLP administration. Further studies demonstrated that GLP elicits anti-fibrotic actions that are associated with a novel dual effect on apoptosis in vivo (inhibit) or in vitro (promote), suppression of cell cycle in vivo, induction of S phase arrest in vitro, and attenuation of ECM-receptor interaction-associated molecule expressions including integrins ITGA6 and ITGA8. Furthermore, GLP significantly inhibited the TGF-ß/Smad signaling in mice, and reduced TGF-ß1 or its agonist SRI-011381-induced Smad2 and Smad3 phosphorylations, but increased Samd7 expression in HSC-T6 cells. CONCLUSION: This study provides the first evidence that GLP could be a promising dietary strategy for treating liver fibrosis, which protects against liver fibrosis and HSC activation through targeting inflammation, apoptosis, cell cycle, and ECM-receptor interactions that are mediated by TGF-ß/Smad signaling.


Asunto(s)
Reishi , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Smad/metabolismo , Células Estrelladas Hepáticas , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Colágeno Tipo I/metabolismo , Ciclo Celular , Inflamación/metabolismo , Apoptosis , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA