Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 310: 116298, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36870460

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Intracerebral hemorrhage (ICH) is a central nervous system disease that causes severe disability or death. Even though Annao Pingchong decoction (ANPCD), a traditional Chinese decoction, has been used clinically to treat ICH in China, its molecular mechanism remains unclear. AIM OF THE STUDY: To study whether the neuroprotective effect of ANPCD on ICH rats is achieved by alleviating neuroinflammation. This paper mainly explored whether inflammation-related signaling pathways (HMGB1/TLR4/NF-κB P65) plays a role in ANPCD treatment of ICH rats. MATERIALS AND METHODS: Liquid chromatography-tandem mass spectrometry was used to analyze the chemical composition of ANPCD. ICH models were established by injecting autologous whole blood into the left caudate nucleus of Sprague-Dawley (SD) rats. Modified neurological severity scoring (mNSS) was used to assess the neurological deficits. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 were analyzed using enzyme-linked immunosorbent assay (ELISA). Pathological changes in the rat brains were observed using hematoxylin-eosin, Nissl, and TUNEL staining. The protein levels of HMGB1, TLR4, NF-κB p65, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were measured by western blotting and immunofluorescence analysis. RESULTS: Ninety-three ANPCD compounds were identified, including 48 active plasma components. Treatment with ANPCD effectively improved the outcome, as observed by the neurological function scores analysis and brain histopathology. Our results showed that ANPCD exerts its anti-inflammatory effects by significantly downregulating the expression of HMGB1, TLR4, NF-κB p65, TNF-α, IL-1ß, and IL-6. ANPCD also exerted anti-apoptotic effects by significantly decreasing the apoptosis rate and Bax/Bcl-2 ratio. CONCLUSION: We found that ANPCD had neuroprotective effect in clinical work. Here, we also found that the action mechanism of ANPCD might be related to attenuate neuroinflammation and apoptosis. These effects were achieved by inhibiting the expression of HMGB1, TLR4 and NF-κB p65.


Asunto(s)
Proteína HMGB1 , Fármacos Neuroprotectores , Ratas , Animales , Proteína HMGB1/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Interleucina-6/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Receptor Toll-Like 4/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hemorragia Cerebral/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Apoptosis
2.
Aging Dis ; 13(5): 1471-1487, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36186127

RESUMEN

Excessive sodium fluoride (NaF) intake interferes with reproductive function in humans and animals; however, strategies to prevent these effects are still underexplored. Here, we showed that in vivo and in vitro supplementation of folic acid (FA) efficaciously improved the quality of NaF-exposed oocytes. FA supplementation not only increased ovulation of oocytes from NaF-treated mice but also enhanced oocyte meiotic competency and fertilization ability by restoring the spindle/chromosome structure. Moreover, FA supplementation could exert a beneficial effect on NaF- exposed oocytes by restoring mitochondrial function, eliminating reactive oxygen species accumulation to suppress apoptosis. We also found that FA supplementation restored the defective phenotypes in oocytes through a Sirt1/Sod2-dependent mechanism. Inhibition of Sirt1 with EX527 abolished the FA-mediated improvement in NaF-exposed oocyte quality. Collectively, our data indicated that FA supplementation is a feasible approach to protect oocytes from NaF-related deterioration.

3.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4555-4562, 2021 Sep.
Artículo en Chino | MEDLINE | ID: mdl-34581061

RESUMEN

To analyze the research hotspots and trends of traditional Chinese medicine(TCM) for neurogenesis with use of CiteSpace 5.7.R3 software. The bibliometrics analysis on the literatures of TCM for neurogenesis from 1987 to 2020 included in the CNKI database was conducted to visualize the number of papers, authors, institutions and keywords. Totally 736 literatures were included and the volume of annual publications showed an upward in volatility. At present, several stable research teams have been formed, which were represented by DING Fei, ZHOU Chong-jian and ZHOU Yong-hong, but the cooperation was not close among the teams. According to the analysis of research institutions, Institute of Diagnostics of Hunan University of Chinese Medicine and Acupuncture Research Center of Tianjin University of Traditional Chinese Medicine produced largest number of literatures. The cooperation among institutions, with universities of TCM and affiliated hospitals as the main research force, was characterized by dominant cooperation among regional institutions and less cross-regional cooperation. Keywords analysis showed that in the field of TCM for neurogenesis, a lot of studies mainly focused on the disease field, treatment and medication, TCM therapy and molecular mechanism. The research on TCM therapy and molecular mechanism for neurogenesis of central nervous system will be the research hotspots in future.


Asunto(s)
Terapia por Acupuntura , Medicina Tradicional China , Bibliometría , Bases de Datos Factuales , Neurogénesis
4.
Artículo en Inglés | MEDLINE | ID: mdl-34149862

RESUMEN

BACKGROUND: Zuogui Jiangtang Jieyu decoction (ZJJ) is mainly used for the treatment of diabetes-related depression in current clinical applications and research. This study aims to investigate whether the brain IR/IRS-1 signaling pathway is involved in the therapeutic effect of ZJJ on depression-like behavior in diabetic rats. METHODS: Sprague-Dawley rats were fed with high-fat diet and subjected to streptozotocin injection to establish the diabetes animal model. After treatment with different doses of ZJJ (20.530 g/kg or 10.265 g/kg) for 4 weeks, the blood glucose level and peripheral insulin resistance were measured. The forced-swimming test (FST) and Morris water maze test (MWMT) were applied for the mood and cognitive function assessment. Then, the Western blot method was used to analyze the protein levels of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphatidylonositol-3-kinase (PI3K), and protein kinase B (PKB, also as known as AKT) in the hippocampus of diabetic rats. Meanwhile, the immunofluorescence method was performed to analyze the above proteins' expression in the neuron and astrocyte. At last, the levels of glycogen, lactate, and ATP were tested by the ELISA method. Additionally, the insulin-sensitive glucose transporter 4 (GLUT4) and the lactate transporter monocarboxylate transporter 4 (MCT4) were analyzed by the Western blot method. RESULTS: ZJJ administration significantly decreased the level of blood glucose and improved the peripheral insulin resistance in diabetic rats. Besides, ZJJ attenuated the depression-like behavior and the cognitive dysfunction in rats with diabetes. Furthermore, we found the upregulation of protein expression of phospho-IR, phospho-IRS-1, phospho-PI3K, and phospho-AKT in the hippocampus of diabetic rats after being treated with ZJJ. Moreover, the above proteins are increased not only in the neuron but also in the astrocyte after ZJJ administration. In addition, ZJJ increased the content of ATP, glycogen, and lactate, as well as the expression of GLUT4 and MCT4 in the hippocampus of diabetic rats. CONCLUSIONS: These findings suggest that ZJJ improves the depression-like behavior of diabetic rats by activating the IR/IRS-1 signaling pathway in both hippocampal neuron and astrocyte. And the brain IR/IRS-1 signaling pathway plays an important role in astrocyte-neuron metabolic coupling, providing a potential mechanism by which the IR/IRS-1 signaling pathway may contribute to the treatment of ZJJ on diabetes-related depression.

5.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1205-1210, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787116

RESUMEN

To explore the effect of Baihe Dihuang Decoction on the synaptic plasticity of hippocampal neurons in rats with anxious depression. Fifty SD rats were randomly divided into normal group, model group, venlafaxine group(6.75 mg·kg~(-1)), high-dose Baihe Dihuang Decoction group(8.64 g·kg~(-1)) and low-dose Baihe Dihuang Decoction group(4.32 g·kg~(-1)). Chronic restraint stress(6 h) combined with corticosterone(ih, 30 mg·kg~(-1)) was used to establish an anxious depression model, and 7 days after modeling, the administration started and continued for 21 days. The anxiety and depression-like behaviors of the rats were evaluated. Golgi-Cox staining and electron microscopy were used to observe the morphology and ultrastructural changes of synaptic dendrites. Immunofluorescence was used to detect the expression of hippocampal synaptic plasticity protein synapsin-1 and postsynaptic density protein 95(PSD-95). Western blot method was used to detect the expression of functional protein synaptophysin(SYP) and synaptic Ras GTPase activating protein(SynGap). The results showed that the rats in the model group had obvious anxiety and depression-like behaviors, the hip-pocampal dendritic spine density and branch length were reduced, the number of synapses was cut, and the internal structure was da-maged. The average fluorescence intensity of synapsin-1 and PSD-95 was significantly reduced and the expression of SYP and SynGap also decreased. High-dose Baihe Dihuang Decoction could significantly improve the anxiety and depression-like behaviors of model rats, relieve synaptic damage, and increase the expression of synapsin-1, PSD-95, SYP, and SynGap proteins. Therefore, we believe that Baihe Dihuang Decoction can improve anxiety and depression behaviors by regulating the synaptic plasticity of hippocampal neurons.


Asunto(s)
Depresión , Plasticidad Neuronal , Animales , Depresión/tratamiento farmacológico , Hipocampo , Ratas , Ratas Sprague-Dawley , Sinapsis
6.
Artículo en Inglés | MEDLINE | ID: mdl-30581482

RESUMEN

Diagnosis with breast cancer is a major life event that elicits increases in depressive symptoms for up to 50% of women. Xiaoyao Kangai Jieyu Fang (XYKAJY) is derived from a canonical TCM formula, Xiaoyao San (XYS), which has a history of nearly 1000 years for treating depression. The aim of this study was to investigate whether XYKAJY alleviates depression-like behavior and breast tumor proliferation in breast cancer mice then explore the mechanisms underlying its action on HPA axis and hippocampal plasticity further. XYKAJY was treated at the high dose of 1.95 g/mL and 0.488 g/mL, after 21 days of administration. Different behaviors, monoamine neurotransmitters, tumor markers, and the index of HPA axis were detected to evaluate depressive-like symptoms of breast cancer mice. Also, the pathological changes of the tumor, hippocampus, and the expressions of GR, NR2A, NR2B, CAMKII, CREB, and BDNF were detected. In this study, XYKAJY formulation significantly improved the autonomic behavior, reduced the incubation period of feeding, and reversed the typical depressive-like symptoms in breast cancer mice. Also, it reduced the content of CORT, ACTH, CRH, and CA125, CA153, CEA in the blood, protected the pathological changes of the hippocampus and tumor, upregulated the expression of GR, CREB, and BDNF in the hippocampus, and significantly decreased the expression of NR2A, NR2B, and CaMKII. These results provide direct evidence that XYKAJY effectively alleviates depression-like behaviors and tumor proliferation in vehicle mice with ameliorates hippocampus synaptic plasticity dysfunctions.

7.
Zhongguo Zhong Yao Za Zhi ; 43(7): 1360-1365, 2018 Apr.
Artículo en Chino | MEDLINE | ID: mdl-29728024

RESUMEN

This paper aimed to predict the active ingredients and action targets of Compound Uncaria Hypotensive Tablet for hypertension based on network pharmacology, and discuss its possible "multi-components, multi-targets, and multi-pathways" mechanism for treatment of hypertension. The integrative pharmacological platform of traditional Chinese medicine (TCM-IP) was used to construct the component target-disease target network of Compound Uncaria Hypotensive Tablet, and the internet analysis method was used to screen the key nodes, on which the pathway enrichment analysis was carried out to explore its possible biological process in the treatment of hypertension. Target network analysis showed that, 35 predicted active ingredients of Compound Uncaria Hypotensive Tablet had a strong interaction with the prostaglandin endogenous peroxidase synthase (PTGS1, PTGS2), ATP synthetase (ATP1A1, ATP5A1, ATP5C1, ATP5B) and other 29 major proteins. Network enriched analysis showed that Compound Uncaria Hypotensive Tablet participated in the regulation of hypertension in different processes of pathology, through 15 pathways such as regulating blood pressure, G protein coupled receptor activation, adrenergic myocardial cell signal transduction and platelet activation. This study revealed the potential active compounds and possible mechanism of Compound Uncaria Hypotensive Tablet for treatment of hypertension, providing theoretical references for further systematic laboratory experiments on effective compounds and action mechanism of Compound Uncaria Hypotensive Tablet.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Hipertensión/tratamiento farmacológico , Uncaria , Humanos , Medicina Tradicional China , Transducción de Señal , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA