Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155559, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579642

RESUMEN

BACKGROUND: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE: We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.


Asunto(s)
Bencilisoquinolinas , FN-kappa B , Factores de Transcripción NFATC , Osteoclastos , Osteogénesis , Ovariectomía , Ligando RANK , Especies Reactivas de Oxígeno , Animales , Bencilisoquinolinas/farmacología , Femenino , Ligando RANK/metabolismo , Ratones , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Modelos Animales de Enfermedad , Resorción Ósea/tratamiento farmacológico , Ratones Endogámicos C57BL , Células RAW 264.7 , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Humanos , Tetrahidroisoquinolinas
2.
Front Pharmacol ; 13: 803880, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496311

RESUMEN

Osteoporosis is a serious public health problem that results in fragility fractures, especially in postmenopausal women. Because the current therapeutic strategy for osteoporosis has various side effects, a safer and more effective treatment is worth exploring. It is important to examine natural plant extracts during new drug design due to low toxicity. Mogrol is an aglycon of mogroside, which is the active component of Siraitia grosvenorii (Swingle) and exhibits anti-inflammatory, anticancer and neuroprotective effects. Here, we demonstrated that mogrol dose-dependently inhibited osteoclast formation and function. To confirm the mechanism, RNA sequencing (RNA-seq), real-time PCR (RT-PCR), immunofluorescence and Western blotting were performed. The RNA-seq data revealed that mogrol had an effect on genes involved in osteoclastogenesis. Furthermore, RT-PCR indicated that mogrol suppressed osteoclastogenesis-related gene expression, including CTSK, ACP5, MMP9 and DC-STAMP, in RANKL-induced bone marrow macrophages Western blotting demonstrated that mogrol suppressed osteoclast formation by blocking TNF receptor-associated factor 6 (TRAF6)-dependent activation of the mitogen-activated protein kinase nuclear factor-B (NF-κB) signaling pathway, which decreased two vital downstream transcription factors, the nuclear factor of activated T cells calcineurin-dependent 1 (NFATc1) and c-Fos proteins expression. Furthermore, mogrol dramatically reduced bone mass loss in postmenopausal mice. In conclusion, these data showed that mogrol may be a promising procedure for osteoporosis prevention or therapy.

3.
Phytother Res ; 35(6): 3214-3225, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33595153

RESUMEN

Piper nigrum is extensively utilized because of its antioxidation, antiallergic, antitumor, antiinflammatory, antidiarrhea, and gastrointestinal protection. We attempted to indicate whether the Piper nigrum extract (PNE) could alleviate ovalbumin (OVA)-induced food allergy, and to explore its potential mechanism. An OVA-induced food allergy mouse model was established, and different concentrations of PNE were administrated. Symptoms of food allergy, levels of immunoglobulin E (IgE), mucosal mast cell protease-1 (mMCP-1), and intestine pathological changes were assessed. Additionally, the expressions of T helper (Th) 2, Th17 and regulatory T (Treg)-associated cytokines and the proportion of Th17 and Treg cells in CD4+ T cells were measured. We found PNE attenuated symptoms of food allergy and decreased the levels of IgE and mMCP-1. In PNE group, the infiltration degree of inflammatory cells was ameliorated and the villi of small intestine were more complete. Moreover, the expressions of Th2 and Th17 cell-associated cytokines were down-regulated by PNE pretreatment, while the levels of Treg cell-associated cytokines were up-regulated. PNE decreased the number of Th17 cells, while increased the Tregs cells. PNE treatment dose-dependently improved the Th17/Treg balance. PNE plays a protective role in OVA-induced food allergy through inhibiting Th2 cell response and regulating the Th17/Treg balance.


Asunto(s)
Antialérgicos/farmacología , Hipersensibilidad a los Alimentos/prevención & control , Piper nigrum/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Citocinas/metabolismo , Femenino , Inmunoglobulina E/metabolismo , Ratones , Ratones Endogámicos BALB C , Ovalbúmina , Linfocitos T Reguladores/metabolismo , Células Th17/inmunología , Células Th2/inmunología
4.
Eur J Pharmacol ; 879: 173128, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32339512

RESUMEN

Platinum drugs, such as cisplatin (DDP) and carboplatin (CBP), are the main drugs for the treatment of lung cancer, but their practical clinical application is limited by severe toxicity and acquired drug resistance. Our previous study has indicated that diplatin, [2-(4-(diethyl-amino)butyl)malonate-O,O']-[(1R,2R)-cyclohexane-1,2-diamine N,N'] platinum (II) phosphate, a novel water-soluble platinum complex, could overcome DDP-resistant cells and was less toxic than comparable platinum drugs. In the present study, the effects and mechanisms of diplatin were further evaluated for its development as a novel anti-lung cancer platinum drug. Here, we found diplatin down-regulated the viability of H460 and LTEP-A-2 cells in a dose-dependent manner. Nude mice administrated with diplatin (30-120 mg/kg) via tail vein injection dose-dependently inhibited the growth of H460 and LTEP-A-2 xenograft tumors, whose action mainly correlated with the induction of tumor apoptosis. Particularly, the exposure of lung cancer cells or xenograft tumors to diplatin resulted in elevated Fas level, and knockdown of Fas ameliorated diplatin-induced cells apoptosis. Overall, we suggest that diplatin has potent anti-tumor activity, which probably acts through Fas-mediated signaling pathway.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteína Ligando Fas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Compuestos Organoplatinos/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Compuestos Organoplatinos/farmacología , Solubilidad , Agua/química
5.
J Cell Physiol ; 235(9): 5951-5961, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32026468

RESUMEN

Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas/tratamiento farmacológico , Resorción Ósea/tratamiento farmacológico , Ácido Elágico/farmacología , Osteoporosis/tratamiento farmacológico , Animales , Conservadores de la Densidad Ósea/farmacología , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Resorción Ósea/genética , Resorción Ósea/patología , Diferenciación Celular/efectos de los fármacos , Humanos , Ratones , FN-kappa B , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/etiología , Osteoporosis/genética , Osteoporosis/patología , Ovariectomía/efectos adversos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
6.
Life Sci ; 244: 117336, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972206

RESUMEN

AIMS: Postmenopausal osteoporosis and other osteolytic bone diseases are often caused by the elevation in osteoclastogenesis and/or increased osteoclastic bone resorption, leading to excessive bone loss. Hederagenin (Hed) is a pentacyclic triterpenoid saponin extracted from various natural medicinal plants and exhibits numerous biological activities and may offer benefits against bone-related conditions. We evaluated the effects of Hed on osteoclast formation and bone resorption in vitro and the in vivo therapeutic benefits in the mouse model of ovariectomy (OVX)-induced bone loss. MAIN METHODS: In vitro, osteoclast formation were determined by TRAcp staining; bone resorption were examined using Hydroxyapatite resorption assay and Podosomal actin belt formation assay; Related molecular mechanisms were determined by western blot assay. Construction of OVX mice by bilateral oophorectomy to simulate bone loss in vivo. KEY FINDINGS: In vitro cellular assays showed that Hed inhibited RANKL-induced osteoclast formation and osteoclast bone (hydroxyapatite) resorption as well as marker gene expression from BMM culture. Mechanistically, Hed attenuated RANKL-induced intracellular reactive oxygen species (ROS) production, and MAPK signaling pathway (ERK and p38) activation which curbed the downstream induction of c-Fos and NFATc1. Consistent with the in vitro findings, Hed administration effectively protected OVX mice from bone loss by reducing osteoclast number and activity on bone surface. SIGNIFICANCE: Our data provided promising evidence for the potential use of Hederagenin in the treatment of osteoclast-mediated osteolytic bone diseases such as postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea/prevención & control , Ácido Oleanólico/análogos & derivados , Osteogénesis/efectos de los fármacos , Ovariectomía/efectos adversos , Sustancias Protectoras/farmacología , Ligando RANK/metabolismo , Animales , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Resorción Ósea/patología , Femenino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ácido Oleanólico/farmacología , Ligando RANK/genética , Transducción de Señal
7.
J Cell Physiol ; 234(10): 17812-17823, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30815894

RESUMEN

Aseptic prosthetic loosening and periprosthetic infection resulting in inflammatory osteolysis is a leading complication of total joint arthroplasty (TJA). Excessive bone destruction around the bone and prosthesis interface plays a key role in the loosening prostheses leading to revision surgery. The bacterial endotoxins or implant-derived wear particles-induced inflammatory response is the major cause of the elevated osteoclast formation and activity. Thus, agents or compounds that can attenuate the inflammatory response and/or inhibit the elevated osteoclastogenesis and excessive bone resorption would provide a promising therapeutic avenue to prevent aseptic prosthetic loosening in TJA. Daphnetin (DAP), a natural coumarin derivative, is clinically used in Traditional Chinese Medicine for the treatment of rheumatoid arthritis due to its anti-inflammatory properties. In this study, we report for the first time that DAP could protect against lipopolysaccharide-induced inflammatory bone destruction in a murine calvarial osteolysis model in vivo. This protective effect of DAP can in part be attributed to its direct inhibitory effect on RANKL-induced osteoclast differentiation, fusion, and bone resorption in vitro. Biochemical analysis found that DAP inhibited the activation of the ERK and NFATc1 signaling cascades. Collectively, our findings suggest that DAP as a natural compound has potential for the treatment of inflammatory osteolysis.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Osteogénesis/efectos de los fármacos , Osteólisis/tratamiento farmacológico , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos , Umbeliferonas/farmacología , Animales , Antiinflamatorios/farmacología , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteólisis/inducido químicamente , Osteólisis/metabolismo , Células RAW 264.7
8.
Front Pharmacol ; 10: 1587, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038256

RESUMEN

Osteolytic bone diseases, for example postmenopausal osteoporosis, arise from the imbalances between osteoclasts and osteoblasts in the bone remodeling process, whereby osteoclastic bone resorption greatly exceeds osteoblastic bone formation resulting in severe bone loss and deterioration in bone structure and microarchitecture. Therefore, the identification of agents that can inhibit osteoclast formation and/or function for the treatment of osteolytic bone disease has been the focus of bone and orthopedic research. Vindoline (Vin), an indole alkaloid extracted from the medicinal plant Catharanthus roseus, has been shown to possess extensive biological and pharmacological benefits, but its effects on bone metabolism remains to be documented. Our study demonstrated for the first time, that Vin could inhibit osteoclast differentiation from bone marrow macrophages (BMMs) precursor cells as well as mature osteoclastic bone resorption. We further determined that the underlying molecular mechanism of action of Vin is in part due to its inhibitory effect against the activation of MAPK including p38, JNK, and ERK and intracellular reactive oxygen species (ROS) production. This effect ultimately suppressed the induction of c-Fos and NFATc1, which consequently downregulated the expression of the genes required for osteoclast formation and bone resorption. Consistent with our in vitro findings, in vivo administration of Vin protected mice against ovariectomy (OVX)-induced bone loss and trabecular bone deterioration. These results provided promising evidence for the potential therapeutic application of Vin as a novel treatment option against osteolytic diseases.

9.
Nutrition ; 29(1): 235-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22964088

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease involving oxidative stress as well as a wide variety of cells activated from smoking cigarettes. There have been disappointingly few therapeutic advances in drug therapy for COPD. Plant polyphenols have been the topic of much research regarding their antioxidant activities and antiinflammatory and immunomodulatory effects. In the present study, we ask whether apple polyphenol provides protection against cigarette smoke (CS)-induced acute lung injury. METHODS: ICR mice were exposed to CS for 4 d with increasing exposure time for up to 6 h per day to elicit epithelial cells injury. One hour before smoke exposure, mice were treated with apple polyphenol (APP) by gavage; all examinations were performed 18 h after the last CS exposure. RESULTS: APP at 30, 100, or 300 mg not only significantly dose-dependently reduced the CS-induced accumulation of inflammatory cells and gene/protein expression of proinflammatory factors both in the lung and in bronchoalveolar lavage fluid, but also significantly reversed oxidative stress in the lungs. Additionally, treatment with APP also significantly regulated the CS-induced imbalance of matrix metalloproteinases-9/tissue inhibitor of metalloproteinase-1 expression in the lungs. To investigate further the possible signaling pathway of APP effects, we examined protein expression of p-P38 MAPK by immunohistochemistry that found treatment with APP significantly decreased the CS-induced increases of p-P38 expression in the lungs. CONCLUSION: Taken together, APP may be a potential dietary nutrient supplement agent to improve quality of life of COPD patients by inhibiting CS-exposed acute lung injury via P38 MAPK signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Malus , Polifenoles/administración & dosificación , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Quimiocinas/genética , Citocinas/genética , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Malus/química , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/prevención & control , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Fumar/efectos adversos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA