Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 110: 154606, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36584606

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is a disease of retinal pigment epithelium (RPE) cells. We have previously demonstrated that blue light can damage RPE cells and their underlying mechanisms. We found that hexahydrocurcumin (HHC), a metabolite of curcumin, had better retinal protection than curcumin. However, the involved mechanisms remain unclear. METHODS: By exposing ARPE-19 human RPE cells and mouse primary RPE cells to blue light, the intracellular mechanisms of HHC in cells were investigated, including the proliferation of RPE cells and the effects of HHC on activating intracellular protective mechanisms and related factors. Next-generation sequencing (NGS) RNA sequencing revealed the underlying mechanisms involved in the induction and regulation of HHC treatment following blue light exposure. RESULTS: HHC promoted autophagy by enhancing autophagic flux, reduced oxidative stress and endoplasmic reticulum (ER) stress, and effectively reversed blue light-induced cell death. RNA sequencing-based bioinformatics approaches comprehensively analyze HHC-mediated cellular processes. CONCLUSION: Our findings elucidate the mechanisms of HHC against blue light damage in RPE cells and are beneficial for the development of natural metabolite-based preventive drugs or functional foods.


Asunto(s)
Curcumina , Humanos , Animales , Ratones , Curcumina/farmacología , Curcumina/metabolismo , Epitelio Pigmentado de la Retina , Retina , Estrés Oxidativo
2.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572787

RESUMEN

Age-related macular degeneration (AMD) is the progressive degeneration of the retinal pigment epithelium (RPE), retina, and choriocapillaris among elderly individuals and is the leading cause of blindness worldwide. Thus, a better understanding of the underlying mechanisms in retinal tissue activated by blue light exposure is important for developing novel treatment and intervention strategies. In this study, blue-light-emitting diodes with a wavelength of 440 nm were applied to RPE cells at a dose of 3.7 ± 0.75 mW/cm2 for 24 h. ARPE-19 cells were used to investigate the underlying mechanism induced by blue light exposure. A trypan blue exclusion assay was used for the cell viability determination. Flow cytometry was used for apoptosis rate detection and autophagy analysis. An immunofluorescence microscopy analysis was used to investigate cellular oxidative stress and DNA damage using DCFDA fluorescence staining and an anti-γH2AX antibody. Blue light exposure of zebrafish larvae was established to investigate the effect on retinal tissue development in vivo. To further demonstrate the comprehensive effect of blue light on ARPE-19 cells, next-generation sequencing (NGS) was performed for an ingenuity pathway analysis (IPA) to reveal additional related mechanisms. The results showed that blue light exposure caused a decrease in cell proliferation and an increase in apoptosis in ARPE-19 cells in a time-dependent manner. Oxidative stress increased during the early stage of 2 h of exposure and activated DNA damage in ARPE-19 cells after 8 h. Furthermore, autophagy was activated in response to blue light exposure at 24-48 h. The zebrafish larvae model showed the unfavorable effect of blue light in prohibiting retinal tissue development. The RNA-Seq results confirmed that blue light induced cell death and participated in tissue growth inhibition and maturation. The current study reveals the mechanisms by which blue light induces cell death in a time-dependent manner. Moreover, both the in vivo and NGS data uncovered blue light's effect on retinal tissue development, suggesting that exposing children to blue light could be relatively dangerous. These results could benefit the development of preventive strategies utilizing herbal medicine-based treatments for eye diseases or degeneration in the future.


Asunto(s)
Autofagia/efectos de la radiación , Daño del ADN/efectos de la radiación , Luz/efectos adversos , Degeneración Macular/etiología , Estrés Oxidativo/efectos de la radiación , Epitelio Pigmentado de la Retina/efectos de la radiación , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Pez Cebra
3.
Eur J Cancer Prev ; 21(5): 467-73, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22828439

RESUMEN

We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis , Asclepias , Daño del ADN , Glicósidos/uso terapéutico , Leucemia/tratamiento farmacológico , Fitoterapia , Línea Celular Tumoral , Humanos , Preparaciones de Plantas/uso terapéutico , Raíces de Plantas
4.
J Toxicol Environ Health A ; 74(11): 737-45, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21480048

RESUMEN

Epigenetic effects are considered heritable but may also be modified by environmental factors. Arecoline (ARC), a major component of areca nut alkaloids, is an important environmental risk factor for oral cancer and hepatocellular carcinomain Taiwan. The aim of this study was to determine the influence of ARC on the epigenome. The mRNA expression of histone methyltransferases, acetyltransferases, and demethylases were assessed in K-562 cells following exposure to ARC. Results demonstrated that ARC produced changes in the expressions of several genes catalyzing histone methylation (Mll, Setdb1, and Suv39h2), acetylation (Atf2), and demethylation (JMJD6). Since H3K9 methylation is involved in maintaining the stability of heterochromatin structures and inactivating euchromatic gene expressions, data suggest that the ARC-induced epigenetic changes play a role in the mechanisms underlying chemical-mediated cytotoxicity and genotoxicity.


Asunto(s)
Arecolina/toxicidad , Citotoxinas/toxicidad , Extractos Vegetales/toxicidad , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Epigénesis Genética , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , ARN Mensajero/metabolismo
5.
BMC Cancer ; 11: 58, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21299907

RESUMEN

BACKGROUND: Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression were observed in various tumors. We selected aurora B and MSK1 as representatives for testing various compounds and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on histone H3 phosphorylation. METHODS: GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 µM squamocin for 24 h. The expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry. RESULTS: Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells, arrested the cell cycle at the G1 phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition, we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p) and H3S28 (H3S28p) in association with the downregulation of aurora B and pMSK1 expressions. CONCLUSIONS: This study is the first to show that squamocin affects epigenetic alterations by modulating histone H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.


Asunto(s)
Apoptosis/efectos de los fármacos , Furanos/farmacología , Fase G1/efectos de los fármacos , Histonas/metabolismo , Lactonas/farmacología , Neoplasias/patología , Protamina Quinasa/metabolismo , Antineoplásicos Fitogénicos/farmacología , Apoptosis/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxinas/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA