Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 17(13): 12160-12175, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37200053

RESUMEN

Phototherapy is an effective strategy to control Candida albicans (C. albicans) infection without raising the concern of drug resistance. Despite its effectiveness, a higher dose of phototherapeutic power is required for C. albicans elimination compared to bacteria that have to be used, which is readily accompanied by off-target heat and toxic singlet oxygen to damage normal cells, thus limiting its usefulness for antifungal applications. Here to overcome this, we develop a "three-in-one" biomimetic nanoplatform consisting of an oxygen-dissolved perfluorocarbon camouflaged by a photosensitizer-loaded vaginal epithelial cell membrane. With a cell membrane coating, the nanoplatform is capable of specifically binding with C. albicans at the superficial or deep vaginal epithelium, thereby centering the phototherapeutic agents on C. albicans. Meanwhile, the cell membrane coating endows the nanoplatform to competitively protect healthy cells from candidalysin-medicated cytotoxicity. Upon candidalysin sequestration, pore-forming on the surface of the nanoplatform accelerates release of the preloaded photosensitizer and oxygen, resulting in enhanced phototherapeutic power for improved anti-C. albicans efficacy under near-infrared irradiation. In an intravaginal C. albicans-infected murine model, treatment with the nanoplatform leads to a significantly decreased C. albicans burden, particularly when leveraging candidalysin for further elevated phototherapy and C. albicans inhibition. Also, the same trends hold true when using the nanoplatform to treat the clinical C. albicans isolates. Overall, this biomimetic nanoplatform can target and bind with C. albicans and simultaneously neutralize the candidalysin and then transform such toxins that are always considered a positive part in driving C. albicans infection with the power of enhancing phototherapy for improved anti-C. albicans efficacy.


Asunto(s)
Candida albicans , Candidiasis Vulvovaginal , Células Epiteliales , Humanos , Animales , Ratones , Células Cultivadas , Candidiasis Vulvovaginal/terapia , Fototerapia , Fármacos Fotosensibilizantes/farmacología
2.
Small ; 18(35): e2203292, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35859534

RESUMEN

An effective therapeutic strategy against methicillin-resistant Staphylococcus aureus (MRSA) that does not promote further drug resistance is highly desirable. While phototherapies have demonstrated considerable promise, their application toward bacterial infections can be limited by negative off-target effects to healthy cells. Here, a smart targeted nanoformulation consisting of a liquid perfluorocarbon core stabilized by a lipid membrane coating is developed. Using vancomycin as a targeting agent, the platform is capable of specifically delivering an encapsulated photosensitizer along with oxygen to sites of MRSA infection, where high concentrations of pore-forming toxins trigger on-demand payload release. Upon subsequent near-infrared irradiation, local increases in temperature and reactive oxygen species effectively kill the bacteria. Additionally, the secreted toxins that are captured by the nanoformulation can be processed by resident immune cells to promote multiantigenic immunity that protects against secondary MRSA infections. Overall, the reported approach for the on-demand release of phototherapeutic agents into sites of infection could be applied against a wide range of high-priority pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Liposomas/farmacología , Pruebas de Sensibilidad Microbiana , Fototerapia , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA