Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 14-19, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36647637

RESUMEN

Nicotinamide (NAM) is the amide form of niacin and one of the precursors of nicotinamide adenine dinucleotide (NAD +). NAM can be used as a dietary supplement or clinical therapeutic drug to replenish NAD + levels in the human body and participate in key bodily functions such as cellular metabolism and DNA repair. NAM has the advantage of low cost, wide availability, and sound biosafety. It also has multiple biological functions, including antibacterial effect, anti-inflammatory effect, and modulation of cellular immunity, producing significant ameliorative effects on skin and neurodegenerative diseases. However, most studies on NAM are still at the laboratory stage. Herein we reviewed the role and mechanism of NAM in the prevention and treatment of oral and systemic diseases, explored its potential as clinical therapeutic medication, provided some basis and references for the clinical application of nicotinamide in the prevention and treatment of various diseases, and discussed its prospects for future research and application.


Asunto(s)
NAD , Niacinamida , Humanos , Niacinamida/farmacología , Niacinamida/uso terapéutico , NAD/metabolismo , Piel/metabolismo , Boca/metabolismo , Cara
2.
mSystems ; 6(4): e0078821, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34427509

RESUMEN

The ability of Streptococcus mutans to survive and cause dental caries is dependent on its ability to metabolize various carbohydrates, accompanied by extracellular polysaccharide synthesis and biofilm formation. Here, the role of an rel competence-related regulator (RcrR) in the regulation of multiple sugar transportation and biofilm formation is reported. The deletion of the rcrR gene in S. mutans caused delayed growth, decreased biofilm formation ability, and affected the expression level of its multiple sugar transportation-related genes. Transcriptional profiling revealed 17 differentially expressed genes in the rcrR mutant. Five were downregulated and clustered with the sugar phosphotransferase (PTS) systems (mannitol- and trehalose-specific PTS systems). The conserved sites bound by the rcrR promoter were then determined by electrophoretic mobility shift assays (EMSAs) and DNase I footprinting assays. Furthermore, a potential binding motif in the promoters of the two PTS operons was predicted using MEME Suite 5.1.1. RcrR could bind to the promoter regions of the two operons in vitro, and the sugar transporter-related genes of the two operons were upregulated in an rcrR-overexpressing strain. In addition, when RcrR-binding sites were deleted, the growth rates and final yield of S. mutans were significantly decreased in tryptone-vitamin (TV) medium supplemented with different sugars, but not in absolute TV medium. These results revealed that RcrR acted as a transcription activator to regulate the two PTS systems, accompanied by multiple sugar transportation and biofilm formation. Collectively, these results indicate that RcrR is a critical transcription factor in S. mutans that regulates bacterial growth, biofilm formation, and multiple sugar transportation. IMPORTANCE The human oral cavity is a constantly changing environment. Tooth decay is a commonly prevalent chronic disease mainly caused by the cariogenic bacterium Streptococcus mutans. S. mutans is an oral pathogen that metabolizes various carbohydrates into extracellular polysaccharides (EPSs), biofilm, and tooth-destroying lactic acid. The host diet strongly influences the availability of multiple carbohydrates. Here, we showed that the RcrR transcription regulator plays a significant role in the regulation of biofilm formation and multiple sugar transportation. Further systematic evaluation of how RcrR regulates the transportation of various sugars and biofilm formation was also conducted. Notably, this study decrypts the physiological functions of RcrR as a potential target for the better prevention of dental caries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA